∫L(e^x siny y)dx (e^x cosy-x)dy

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 16:55:43
计算∫(e^xsiny+x)dy-(e^xcosy+y)dx,其中L为从点(-2,0)沿曲线(逆时针)x^2/4+y^2

P=-(e^xcosy+y),∂P/∂y=e^xsiny-1Q=e^xsiny+x,∂Q/∂x=e^xsiny+1补线段L1:y=0,x从2到-2则L+

计算曲线积分∫L(e^(x^2)sinx+3y-cosy)dx+(xsiny-y^4)dy ,其中L是从点(-π,0)沿

先计算∫L3ydx=∫(从-pi到pi)3sinxdx=6.再计算∫L(e^(x^2)sinx-cosy)dx+(xsiny-y^4)dy=∫LPdx+Qdy,注意此时有aQ/ax=aP/ay,因此积

计算∫L(e^xsiny-3y)dx+(e^xcosy+x)dy,其中L是由点(0,0)到点(0,2)x^2+y^2=2

(e^xsiny-3y)对y求导得:e^xcosy-3(e^xcosy+x)对x求到得:e^xcosy+1考虑L1:(0,2)到(0.0)的直线段,则L和L1构成封闭曲线,逆时针方向,所围区域为D由格

∫L(e^x siny-2y)dx+(e^x cosy-z)dy, L:上半圆周(x-a)^2+y^2=a^2 , y>

利用格林公式设P=e^xsiny-2yQ=e^xcosy-z(这儿不可能是z,是x还是2呢,先作为2来解)Q对x求偏导数=e^xcosy,P对y求偏导数=e^xcosy-2差为2不等于0连接半圆的直径

∫e^(-x) cosx dx

∵∫e^(-x)cosxdx=e^(-x)sinx+∫e^(-x)sinxdx(应用分部积分法)==>∫e^(-x)cosxdx=e^(-x)sinx-e^(-x)cosx-∫e^(-x)cosxdx

∫ (e^xsiny-my)dx+(e^xcosy-m)dy其中L是按逆时针方向从圆周(x-1)^2+y^2=1上点A(

补上直线N:y=0、使得半圆y=√[1-(x-1)²]与直线N围成闭区域.P=e^xsiny-my、Q=e^xcosy-m∂P/∂y=e^xcosy-m、∂

求不定积分几道题∫arccosxdx.∫sin(lnx)dx.∫x方arctanxdx.∫x/(1+x)方 e方dx.l

∫arccosxdx=xarccosx-∫-x/√(1-x^2)dx(分部积分法)=xarccosx-1/2∫d(1-x^2)/√(1-x^2)=xarccosx-√(1-x^2)+C∫sin(lnx

积分∫dx /(e^x+e^-x)

将被积函数分子,分母同乘以e^x得:被积函数=e^x/(e^2x+1)=d(e^x)/e^2x+1,令u=e^x,则原式=∫du/(u^2+1)(u>0)=∫[d(tanA)]/[1+(tanA)^2

∫e^(-x)dx=?

∫e^(-x)dx=-∫e^(-x)d(-x)=-e^(-x)+c

∫(e-e^x)dx

∫(e-e^x)dx=ex-e^x+C其中C为常数不定积分是导数的逆运算,你应该会的呀

∫e^(xlnx)dx

不能用初等函数表示,那用series表示吧计算有点复杂,不排除有错误的.ddhan001的做法简直是误导.如果是lny = ∫ xlnx dx的话,则直接对右边

∫1/(e^x+e^(-x))dx,

原式=∫e^x/(e^2x+1)dx=∫de^x/(e^2x+1)=arctan(e^x)+C

∫e^x(e^-x +2)dx

原式=∫(1+2e^x)dx=∫dx+2∫e^xdx=x+2e^x+C

∫(cosx/e^sinx)dx

∫(cosx/e^sinx)dx=∫(1/e^sinx)dsinx=-∫e^(-sinx)d(-sinx)=-e^(-sinx)

求∫(e∧xsiny-y)dx+(e∧xcosy-1)dy,其中L为点A(a,0)到点B(0,0)的上半圆周

由于曲线不封闭,补L1:y=0,x:0-->aL+L1为封闭曲线,可用格林公式:∫(e∧xsiny-y)dx+(e∧xcosy-1)dy=∫∫1dxdy被积函数为1,结果为区域的面积,这是个半圆,面积

求不定积分: ∫dx/(e^x-e^(-x))dx

∫dx/(e^x-e^(-x))=∫e^xdx/(e^2x-1)=∫1/(e^2x-1)de^x=1/2∫[1/(e^x-1)-1/(e^x+1)]de^x=1/2ln(e^x-1)-1/2ln(e^

求不定积分l e(x2) dx

这个积分不是初等函数是没法用解析的方法表示的(MATLAB求解结果为空)这个不可积的问题,现在数学界还没有一个明确解答给你几个典型不可积的常见的把∫sin(x^2)dx∫cos(x^2)dx∫dx/l

求∫e^sinx dx

=e^xsinx-∫e^xcosxdx=e^xsinx-∫cosxd(e^x)=e^xsinx-[e^xcosx-∫e^xd(cosx)]=e^xsinx-(e^xcosx+∫e^xsinxdx)=e

计算曲线积分∫(e^x)(1-2cosy)dx+2(e^x)sinydy,其中L是由点A(派,0)经曲线y=sinx到点

P(x)=e^x-2e^xcosy,Q(x)=2e^xsiny∂P/∂y=2e^xsiny=∂Q/∂x因此积分与路径无关,选择A到O的线段y=0来做积分