∫ln(1 x²)的不定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:00:00
∫ln(1-√x)dx=xln(1-√x)+(1/2)∫√x/(1-√x)dx=xln(1-√x)-(1/2)∫(1-√x-1)/(1-√x)dx=xln(1-√x)-(1/2)x+(1/2)∫1/(
原式=∫ln(x+1)d(x+1)=(x+1)ln(x+1)-∫(x+1)dln(x+1)=(x+1)ln(x+1)-∫(x+1)*1/(x+1)d(x+1)=(x+1)ln(x+1)-∫dx=(x+
∫ln(x+√(1+x^2))dxletx=tanadx=(seca)^2da∫ln(x+√(1+x^2))dx=∫(seca)^2ln(tana+seca))da=∫ln(tana+seca))d(
原式=∫ln(lnx)d(lnx)令lnx=y,得:原式=∫lnydy=ylny-∫yd(lny)=ylny-∫dy=ylny-y+C=lnxln(lnx)-lnx+C
∫ln(x+√(1+x^2))dx=xln(x+√(1+x^2)-∫xd(ln(x+√(1+x^2))[ln(x+√1+x^2)]'=[1+x/√(1+x^2)]/(x+√(1+x^2))=1/√(1
∫dx/x[根号1-(ln^2)x]=∫d(lnx)/[根号1-(ln^2)x]=∫dt/[根号1-t^2](设t=lnx)=arcsint+C=arcsin(lnx)+C
∫dx/x(1+ln²x)=∫[1/(1+ln²x)]d(lnx)=arctan(lnx)+C.
∫ln(1+x)/(1+x)dx=∫ln(1+x)/(1+x)d(1+x)=∫ln(1+x)dln(1+x)=[ln(1+x)]²/2+C
用分部积分法,(uv)'=u'v+uv',设u=ln(1+x^2),v'=1,u'=2x/(1+x^2),v=x,原式=xln(1+x^2)-2∫x^2dx/(1+x^2)=xln(1+x^2)-2∫
等于-xlnx+x+C(其中C是常数)
原式=∫(1+ln^2x)d(lnx)令lnx=u上式化为∫(1+u^2)du=u+u^3/3+c=lnx+(lnx)^3/3+c
再问:我做出来了
∫ln(x+1)dx=∫ln(x+1)d(x+1)=(ln(x+1))(x+1)-∫(x+1)d(ln(x+1))=(x+1)ln(x+1)-∫((x+1)/(x+1))dx=(x+1)ln(x+1)
ln(t-1)的不定积分为(t-1)ln(t-1)-t+c,方法都是一样的,都是分部积分法再问:嗯嗯我想知道有没有一般性的结论,例如t—1带入xlnx-x+c中得结果再答:这个没有一般性的结论,你需要
两个都是求不出来的,只能求近似值.这是我用计算器算的,都逃不开这个Li2函数.12那个ln(1-e^(-kx))的积分,也是求不出来的.我是用级数来求得.因为对于|x-1|<1, ln