∫secx*tan²xdx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:43:49
∫arctanxdx=x*arctanx+∫x/(1+x²)dx=x*arctanx-1/2*ln(1+x²)+C
原式=∫(sinX)^3/(cosx)^4dx=-∫(sinx)^2/(cosx)^4d(cosx)=-∫(1-cosx平方)/(cosx的四次方)d(cosx)=-∫(1/cosx的四次方)d(co
∫tan^2xdx=∫(sec^2x-1)dx=∫sec^2xdx-∫1dx=tanx-t+C
==建议你还是先把前面的基本积分公式背熟在来做题吧.1∫tanxsecx=secx所以原式里面的tan^2xsecx可以拆成(tanxsecx)*tanx把(tanxsecx)代到后面变成secx.利
(secx)^2=1/(cosx)^2=[(cosx)^2+(sinx)^2]/(cosx)^2=1+(tanx)^2(tanx)'=(sinx/cosx)'=[(cosx)^2+(sinx)^2]/
先后进行2次换元积分法:1,(secx)^2dx=d(tanx)2,tanxd(tanx)=(1/2)*d(tan^2x)3,直接导用积分公式了.结果:arc(tan^2x)+c
∫arcsinxdx(分部积分法)=xarcsinx-积分:xd(arcsinx)=xarcsinx-积分:x/根号(1-x^2)dx=xarcsinx+1/2积分:d(1-x^2)/根号(1-x^2
原式=∫sec^2xdx-∫secxtanxdx=tanx-secx
答案是三分之二乘以x的二分之三次方+c
直接套公式∫secx(secx-tanx)dx=∫[(secx)^2-secx*tanx]dx=tanx-secx+c
首先1+tan²x=1/cos²x,所以∫√1+tan²xdx=∫1/cosxdx而∫1/cosxdx=∫cosx/cos²xdx=∫1/(1-sin²
分开算,secxtanx原函数是secx,(secx)^2原函数是tanxsinx原函数是-cosx,(cscx)^2原函数是-cotx第一题是secx-tanx第二题是-2cosx-cotx第三题是
∫cos²xdx=∫cosxdsinx=sinxcosx-∫sinxdcosx=sinxcosx+∫sin²xdx=sinxcosx+∫(1-cos²x)dx=sinxc
∫cosx/xdx是超越积分,已经被证明了它的不定积分不可积.因此是没有答案的.只能求定积分,而且求定积分只能求特殊点,也不能用牛顿-莱布尼茨公式.你在哪里看到的题目呀?
是一个/打重了再问:没打错我看了很多人的搜了很多答案都这样的再答:反正就是一个除号。认为是一个除号就一目了然的理清思绪了。不是吗。形式不重要,真理是最重要的。再问:那谢谢了!再答:也可能是为了避免被认
∫secx(tanx+secx)dx=∫(secx*tanx+sec²x)dx=∫secx*tanxdx+∫sec²xdx=secx+tanx+C再问:我也是这么做的,但答案是ar
它的原函数无法用初等函数表达.再答:有不懂之处请追问,望采纳。
∫arctan(1/x)dx=∫(x)'arctan(1/x)dx=xarctan(1/x)-∫x*{1/[1+x^(-2)]}*[-1/x^2]dx=xarctan(1/x)+∫1/(x+1/x)d
(1)原式=∫(sinx-cosx)^(-1/3)d(sinx-cosx),令u=sinx-cosx,剩下的自己写第二问题目好像码的都有问题
本人积分知识不错,三行搞掂你的题目.∫secxdx=∫secx(secx+tanx)/(secx+tanx)dx=∫(secxtanx+sec²x)/(secx+tanx)dx=∫d(sec