∫sint²
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:02:05
d[∫f(sint)dt]/dx=f(sinx)再问:为什么不是f(sinx)cosx再答:公式:∫[0--->x]f(t)dt求导结果为:f(x)如果是:∫[0--->sinx]f(t)dt求导,结
-(sinx/x)
显然f(1)=0;由微积分基本定理知道f'(x)=sin(x^3)/x^3*3x^2=3sin(x^3)/x.于是∫(0,1)x^2f(x)dx=∫(0,1)f(x)d(x^3/3)=x^3*f(x)
中间那步不用那样的.因为d(sint)=costdt,先把cost换到d里面就是:原式=∫【1/(sint^2)】dsint设sint=x化为∫(1/x^2)dx=-1/x+C再把x换回sint
=-∫(0,1)dx∫(x^2,1)xsint/tdt=-∫(0,1)dt∫(0,t^1/2)xsint/tdx=-1/2cost|(0,1)=1/2(cos1-1)
limx→0[(∫(0→x)cost^2dt])'/([∫(0→x)(sint)/tdt)'](罗比达法则)=limx→0[(cosx^2)/((sint)/t)]=1/1=1再问:什么时候能用洛必达
∫sint/(cost+sint)dt=(1/2)∫[(sint+cost)+(sint-cost)]/(cost+sint)dt=(1/2)∫dt+(1/2)∫(sint-cost)/(cost+s
因为csct-sint=1/sint-sint=[1-(sint)^2]/sint=[(cost)^2]/sint=cost/sint×cost=cott×cost所以∫cott·costdt=∫(c
积分项与x无关,对x求导结果为0.
算反?积分上下限换一下,前面加个负号就行了.具体你应该会算吧.
用word公式编辑器打了好半天啊,望楼主采纳~
用积化和差公式:sinxsiny=(1/2)[cos[(x-y)-cos(x+y)],cosxcosy=(1/2)[cos(x+y)+cos(x-y)]∫sint*sinωtdt=(1/2)∫cos(
解法如下:∫(t-sint)^2sintdt=∫(t^2sint+sint^2sint-2tsint^2)dt=∫t^2sintdt+∫(1-cost^2)sintdt-2∫tsint^2dt=-∫t
选择2-5:CCAC6-10:BDDBB11-15:BCACA判断ABABBBABAA选择第一题的积分区间没看懂
∫(上限x,下限-x)sint+sint^2dt=∫(上限x,下限-x)sintdt+∫(上限x,下限-x)sint^2dt=2∫(上限x,0)sint^2dt(这是因为sint是奇函数,sint^2
a∫1/sintdt=a∫1/(2sin(t/2)cos(t/2))dt【倍角公式】=∫1/(tan(t/2)[cos(t/2)]^2)d(t/2)【凑微分法】=∫1/(tan(t/2))d(tan(
1、等式左边第一部分的积分.上下都乘以一个sint,然后分母变成1-(cost^2),分子变成dcost就OK了.2.、你要求的是1/x^2*(√(x^2-2))么?如果是的话令x=√2/cost进行