∫xe^-xdx 设u= dv=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 12:39:49
你让我情何以堪,微积分没学会遇到偏导数和隐函数的题?对方程两边取对数,化简后成了lnx+f(y)=y然后求导(这里其实用了偏导和隐函数求导.)y‘=1/x+f’(y)再问:隐函数刚学就有这题了,谢了能
由F(x)的三次积分可看出三重积分的积分区域为V:0≤t≤u,0≤u≤v,0≤v≤x,通过作图(略),可改变V中变量的顺序为V:t≤u≤v,t≤v≤x,0≤t≤x.于是,改变积分顺序得F(x)=∫[v
隐函数求导问题把有y看成x函数两端求导y'+e^y+xe^y*y'=0解出y'=-(e^y)/(1+x*e^y)OK?
x=ue^u两边微分:dx=e^udu+ue^udu=[(1+u)e^u]dudu/dx=1/[(1+u)e^u]u^2+v^2=1两边微分:2udu+2vdv=0dv/du=-u/vdv/dx=(d
x=y*e^(-y)故dx/dy=e^(-y)+y*(-e^(-y))=(1-y)*e^(-y)故dy/dx=e^y/(1-y)再问:是吧dy/dx看成分数的是吧?
所谓利用全微分形式的不变性计算z‘x和z'y,就是指先求出全微分dz,再根据dz=z'xdx+z'ydy求出处z'x和z'y、本题中dz=vdu/(1+u^2v^2)+udv/(1+u^2v^2),而
答案是三分之二乘以x的二分之三次方+c
就按楼主的步骤做sin^3x提出一个sinx、sin^3x/cos^3xdx=1/3sin^2x/cos^3xdcosx=(1-cos^2x)/cos^3xdcosx=(1/cos^3x-1/cosx
两边同时求导,y'=e^y+xe^y.y',y'=e^y/(1-xe^y),所以我挺你,是答案错了再问:不对,我刚刚发现把原题x用y表示出来再代进去就可以得到答案了,你能告诉我为什么要这样做吗?再答:
∵(e^x)'=e^x,x'=1∴dv=(e^x)'dx=e^xdxdu=x'dx=dx
不定积分的答案是一系列的曲线族,并不唯一的.所以有无限多个答案,选哪个都是正确的!∫ secx dx = (1/2)ln|(1 + sinx
1/2∫e^2xdx=1/4∫e^2xd2x是因为dx变为d2x了dx=(1/2)d2x1/2∫e^2xdx=1/2∫e^2x(1/2)d2x=1/4∫e^2xd2x
将e^(u+v)=uv两边对u求导得: e^(u+v)*(1+v')=v+u*v' 解得v'=(v-e^(u+v))/(e^(u+v)-u) 即dv/du=(v-e^(u+v))/(e^(u+v
u和v应该是关于x的函数吧?本题我把步骤写的细点,不知楼主能否看明白.ps:大学毕业好多年了,知识掌握不太牢了.本题为复合函数以及两函数乘法求导结合的题目.思路是:将“∫dv”和“∫f(u+v-x)d
补充楼上∫[0,1]xe^xdx=∫[0,1]xde^x=xe^x|[0,1]-∫[0,1]e^xdx=xe^x[0,1]-e^x|[0,1]=e-(e-1)=1
第一题;∫xe^xdx=∫xd(e^x)=x(e^x)-∫(e^x)dx=x(e^x)-e^x+C符号太繁琐,带入符号和数字即可.第二题用三角代换,x=tant,t属于(-PI/4,PI/4)
xe^f(u)=e^yx=e^[y-f(u)]1=e^[y-f(u)][y'-f'(u)u']y'=e^[f(u)-y]+f'(u)u'y''={e^[f(u)-y]+f'(u)u'}=e^[f(u)
y=u^v,则lny=lnu^v,lny=vlnu,求导有:y'/y=v'lnu+vu'/u,y'=y(v'lnu+vu'/u),其中,y=u^v,y'=dy/dx,v'=dv/dx,u'=du/dx
你那个是反常积分,不定积分如下:∫xe^xdx=∫xd(e^x)=x(e^x)-∫(e^x)dx=x(e^x)-e^x+C