∫√(x2 y2)ds.其中L是抛物线y=x2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 23:48:44
S面积 L长度 W宽度 D深度 DS距离中的DS是指的什么距离

distence?再问:主要是代表的哪一种情况

求下列第一型曲线积分 ∫L√(2y^2+z^2)ds,其中L为球面x^2+y^2+z^2=a^2与平面x=y的交线.

你的答案是正确的,书上给的答案错误.在计算∫Lds时应当用曲线的周长,所以你给出球大圆的周长是正确的.而书上说的椭圆2y^2+z^2=a^2其实是那个球大圆投影到XOY面后的椭圆,这个显然不是题中的曲

求曲线积分∫根号(x^2+y^2)ds,其中L为圆周x^2+y^2=-2y

http://zhidao.baidu.com/question/1894230337967359940.html?oldq=1那天我答得一道题,跟这个非常非常像,你比着做吧.

计算曲面积分 ∫∫(x^2+y^2)ds,其中 ∑是上半球面z=根号(4-x^2-y^2)

dz/dx=-x/√(4-x²-y²),dz/dy=-y/√(4-x²-y²)dS=√[1+(dz/dx)²+(dz/dy)²]dxdy=2

计算曲面积分ds/x^2+y^2+z^2.其中L是介于平面z=0及z=h之间的圆柱面x^2+y^2=R^2

根据圆柱面的面积公式,ds=2πRdz把x^2+y^2=R^2带入原积分得到原积分=∫ds/(x^2+y^2+z^2)=∫(0->h)2πRdz/(R^2+z^2)=2π∫(0->h)d(z/R)/[

计算曲面积分∫根号下(x^2+y^2)ds,其中L:x^2+y^2=-2y,

积分曲线x^2+(y+1)^2=1所以参数方程是x=cost,y=-1+sint.t∈[0,2π]ds=√[(x't)^2+(y't)^2]dt=dt∫√(x^2+y^2)ds=∫√(-2y)ds=∫

求下列第一型曲线积分 ∫L|y|ds,其中L为球面x^2+y^2+z^2=2与平面x=y的交线

x²+y²+z²=2x=y∴2x²+z²=2所以L的参数方程为:x=y=cosθ,z=√2sinθ,0≤θ≤2πds=√(x'²+y'

设L是连接O(0,0)及A(1,1)的线段,则曲线积分∫L(X+Y)ds=

连接(0,0)及(1,1)的线段是y=x,dy/dx=1∫L(x+y)ds=∫(0→1)(x+x)√(1+(dy/dx)²)dx=∫(0→1)2x√(1+1)dx=√2*x²|(0

第一型曲线积分的问题:1.计算∫下标L|y| ds,其中L为右半单位圆周:x^2+y^2=1,x>=0

因为所给曲线为关于x轴对称的半圆吧?我们可以用对称性,直接研究第一象限中的曲线部分吧?再乘以2不完了吗?因此绝对值可以去掉了吧?用极坐标代换简单的……分别计算简单,没有什么捷径可走的,分成两个曲线计算

2.计算对弧长∫L(x^2+y)ds的曲线积分 ,其中L是:y=2x,点(0,0)到(1,2).

y=2x,则ds=√(1+2²)dx=√5dx∫(x²+y)ds=∫[0→1](x²+2x)√5dx=√5[(1/3)x³+x²]|[0→1]=4√5

高数曲面积分:计算∫(x+y)e^(x^2+y^2)ds 其中L为圆弧y=√(a^2-x^)和直线y=x与y=-x围成的

L由y=√(a²-x²)和y=x和y=-x围成参数化:t:-π/4→π/4x=acost,y=asintdx=-asintdt,dy=acostdtds=adt∫L(x+y)e^(

设l是从a(1,0)到b(-1,2)的线段,则曲线积分∫L(x+y)ds

直线AB的方程为y=1-x也即x+y=1故∫L(x+y)ds=∫L1ds=∫Lds=|AB|=√[(-1-1)^2+(2-0)^2]=2√2

数学曲线积分 求i=∫y²ds, 其中c是球面x²+y²+z²=r²与

由于曲线关于x,y,z具有轮换对称性,因此有:∫y²ds=∫x²ds=∫z²ds则∫y²ds=(1/3)∫(x²+y²+z²)ds

求设L是从A(1,0)到(1,2)的线段,曲线积分∫(x+y)ds=?

你确定题目没有问题?再问:再答:我就说嘛,选B,L上,x+y=1,所以,转化为1的积分,于是,直接求线段长度即可。再问:老师再问一个问题再问:老师是应用题的第二题谢谢再问:

求曲线积分∫(x+y)ds,其中L为曲线弧x=t,y=t^3,z=3t^2/√2(0<t<1)

尻,这么容易,照代不就行咯ds=√[(dx)^2+(dy)^2+(dz)^2]

求曲线积分I=∫L(e^(x^2+y^2)^(1/2)) ds,其中L为圆周x^2+y^2=R^2

I=∫L(e^(x^2+y^2)^(1/2))ds=∫Le^(R)ds=e^R∫Lds=e^R·2πR=2πRe^R

高数对弧长的积分问题求曲线积分∮e∧√(x²+y²)ds,其中L为圆周x²+y²

分别计算三条线段的积分:L1x²+y²=a²∫[0,π/4]e^aadθ=[aπe^a]/4L2y=0∫[0,a]e^xdx=e^a-1L3y=x∫[0,√a/2]e^√

计算对弧长的曲线积分∫y^2ds,其中C为右半单位圆周,答案是π/2,

C为右半单位圆周化为参数方程x=costy=sintt∈[-π/2,π/2]∫Cy²ds=∫[-π/2,π/2]sin²t√[(dx/dt)²+(dy/dt)²