⊙O的直径AB=5,弦CD⊥AB于E,CD=2根号6,则AE为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:26:52
oc=op为半径,三角形ocp为等腰三角形,所有有∠ocp=∠opc,又因为CP平分∠OCD交⊙O于点P,所以,∠ocp=∠dcp,所以,∠opc=∠dcp,内错角相等是否可以推出两线平行?我也忘记了
连接PB,PA=PBPA+PC=PB+BC≥BC(两点之间,线段最短)即P为BC和MN的交点时PA+PC的最小,最小值为BC的长度易求得OE=3,OF=4,EF=7,CF=3,BE=4因为AB平行于C
设AP=x,则PB=5x,那么⊙O的半径是12(x+5x)=3x∵弦CD⊥AB于点P,CD=10cm∴PC=PD=12CD=12×10=5cm由相交弦定理得CP•PD=AP•PB即5×5=x•5x解得
连接AC,BC因为AB是直径,弦CD垂直AB于P所以CP=1/2CD=4因为∠B=30°,角CPB=90度所以CB=CP/SIN30=4/0.5=8又因为角ACB=90度所以直径AB=CB/COS30
(1)∵直径AB⊥弦CD,∴AB平分弦CD,即CE=12CD=3.在Rt△OCE中,由勾股定理,得OE=OC2−CE2=52−32=4;(2)②,证明:连接OP(如图1),∵OC=OP,∴∠2=∠3,
∵AB为⊙O的直径,AB⊥CD,∴CE=DE=12CD=12×24=12(cm),设⊙O的半径为xcm,则OC=xcm,OE=OB-BE=x-8(cm),在Rt△OCE中,OC2=OE2+CE2,∴x
连接圆心垂直CD,A到直线距离加B到直线距离之和为圆心到直线距离的两倍(中位线定理),连接圆心和D,则圆心到直线距离平方等于半径平方减去半铉长平方=25-16=9,圆心到直线距离等于3,所以A到CD距
(1)∠CPD=∠COB.…(1分)理由:如图所示,连接OD.…(2分)∵AB是直径,AB⊥CD,∴BC=BD,…(3分)∴∠COB=∠DOB=12∠COD.…(4分)又∵∠CPD=12∠COD,∴∠
因为AB=20cm,所以r=10cm,又弦CD⊥AB于E,CD=16cm,所以CE=CD/2=8设OE=x,则AE=10-x,BE=10+X,所以在直角三角形ABC中,CE^2=AE*BE,即:8^2
CE+AE+BF+DF=CE+OE+OF+DF=CD=圆直径=10~一线三等角那三个直角三角形都是等腰直角~所以有了最上面的~
(1)过O作OM⊥CD,M为垂足,毗连OC故:OC=10(圆O的半径)CM=DM=1/2CD=8故:MO=6因为AE⊥CD,BF⊥CD,OM⊥CD故:AE‖BF‖OM又:O为AB中点故:OM为梯形AE
因为同弧对应的圆周角,等于圆心角的一半,而∠COD是劣弧CD所对的圆心角,∠CPD是同一劣弧CD所对的圆周角,因此∠CPD=1/2∠COD;又CD垂直于AB,故∠COB=1/2∠COD,因此∠CPD=
连接CO,设圆的半径为r,∵直径AB平分弦CD,∴AB垂直CD,…(2分)∵AP:PB=1:5,∴设AP=k,PB=5k,则有AB=AP+PB=6k,∴OA=3k,PO=OA-AP=3k-k=2k,∴
6过O点做CD的垂线,垂足为M,连接OD,OD=0.5AB=5,MD=0.5CD=4,在直角三角形OMD中,由勾股定理知OM=3,AE+BF=2OM=6
∵圆O直径CD=10cm,∴圆O半径为5cm,即OC=5cm,∵OM:OC=3:5,∴OM=35OC=3cm,连接OA,∵AB⊥CD,∴M为AB的中点,即AM=BM=12AB,在Rt△AOM中,OA=
∵⊙O的直径CD=5cm,∴OD=OC=12CD=12×5=52(cm),∵OM:OD=3:5,∴OM=35×52=32(cm),连接OA,∵AB⊥CD,∴AB=2AM,在Rt△OAM中,OA2=OM
过点O作OG⊥CD于点G,连接OG,∵点O是圆心,∴CG=12CD.∵点O是AB的中点,AE⊥CD于E,BF⊥CD于F,∴OG是梯形AEFB的中位线,∵AE=3cm,BF=5cm,∴OG=3+52=4
作AE,BF,OP垂直CD于EFPAEFB是梯形,OP是该梯形的中位线,所以OP=1/2(AE+BF)由垂径定理可以得到CP=DP=1/2CD=4cm所以OP=sqrt(5^2-4^2)=3cmAE+
如图,连接OA,设OM=3x,OC=5x,则DM=2x,∵CD=15cm,∴3x+5x+2x=15,解得x=1.5cm,∴OM=3×1.5cm=4.5cm,∴AM=AO2−MO2=(152)2−(92