△z=f(2.02,-0.99)-f(2,-1)=0.0408
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:35:51
因为f(z)=2z+z'-3i,把z'+i代入有:f(z'+i)=2(z'+i)+z'-3i=3z'-i又因为:f(z'+i)=6-3i.令z'=x+yi.x,y是实数,代入上式有:3x+(3y-1)
复变函数f(z)=u(x,y)+iv(x,y)连续的充要条件是两个二元实函数u(x,y),v(x,y)都连续,本题中f(z)=x-iy,这里u(x,y)=x,v(x,y)=-y在xoy平面上处处连续,
你好此函数仅在原点处可导谢谢
再问:不是很明白怎么证明复变函数的连续性可导性你能教教我吗?再答:应用定义,其实这个知识点并不重要,不要太纠结于此
首先f(z)的孤立奇点只有z=2,z=-3,z=-10这三个,而f(z)在同一个圆环域内部展开成洛朗级数是唯一的,所以本题要找的其实就是分别以这三个孤立奇点为圆心的最大解析圆环域有多少个,对于z=2,
设z=a+bi.F(-z)=|1-z|+z=√[(1-a)²+(-b)²]+a+bi=10-3ib=-3.√[(1-a)²+3²]+a=10.解得:a=5.z=
c书上的例题可以由偏导是否满足的条件判定
f对第1个变量的偏导函数记作f1,第2个变量的偏导函数记作f2,dz=f1*d(xz)+f2*d(z/y)...[注:写完整的话是f1(xz,z/y),f2也如此]=f1*(xdz+zdx)+f2*(
f(z)=z/(z+1)*e^[2/(z+1)]设I=∫(|z|=π)f(z)dz因为在区域|z|
再问:就是不懂f(-z)=1+I-zI+z再问:就是不懂f(-z)=1+I-zI+z再答:就是z被-z替换掉了再问:那1不是替换成-1?再答:只是换有z的地方
处处不可导
f(Z)=|1+z|-.Z,f(-z)=|1-z|+.Z设z=a+bi (a、b∈R) 由f(-z)=10+3i得|1-(a+bi)|+a-bi=10+3i
点击放大:
首先找出f(z)的奇点,为z=±1且都是一介极点那么无穷远点的留数就等于这两点的留数和的相反数,z=-1点的留数,根据定理得到{(e^z)/(z-1)|[z=-1]}=(-1/2)e^(-1)z=1点
f(z+i)=z+2z-2i,则f(i)=?f(z+i)=z+2z-2i,令z=0,有:f(i)=-2i
分别把x,y,z,t当做为之数,其余都是常数,求就行了再问:具体怎么做呢?麻烦写清楚些
令z=a+bi,(a,b∈R),则f(z)=2(a+bi)+(a-bi)-3i=3a+(b-3)if(z的共轭+i)=f[a+(1-b)i]=3a+(-b-2)i=6-3i∴3a=6,-b-2=-3解
f(z)=1-2/(z+2)=1-2/[(z-2)+5]=1-0.4*1/[1+(z-2)/5]=1-0.4*Σ【-(z-2)/5】^n(0到+∞)
f(z)=1-2/(z+2)=1-1/[1+(z/2)]=1-1/[1-(-z/2)],根据1/(1-z)=1+z+z^2+...,所以f(z)=z/2-z^2/2^2+z^3/2^3-...+(-1