如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CD
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 16:51:34
如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.
(1)求证:△ACD≌△BCE;
(2)若AC=3cm,则BE=______cm.
(1)求证:△ACD≌△BCE;
(2)若AC=3cm,则BE=______cm.
(1)证明:∵△CDE是等腰直角三角形,∠DCE=90°,
∴CD=CE,
∵∠ACB=90°,
∴∠ACB=∠DCE,
∴∠ACB+∠BCD=∠DCE+∠BCD,
∴∠ACD=∠BCE,
在△ACD和△BCE中
AC=BC
∠ACD=∠BCE
CD=CE,
∴△ACD≌△BCE(SAS);
(2)∵AC=BC=3,∠ACB=90°,由勾股定理得:AB=3
2,
又∵DB=AB,
∴AD=2AB=6
2,
∵△ACD≌△BCE;
∴BE=AD=6
2,
故答案为:6
2.
∴CD=CE,
∵∠ACB=90°,
∴∠ACB=∠DCE,
∴∠ACB+∠BCD=∠DCE+∠BCD,
∴∠ACD=∠BCE,
在△ACD和△BCE中
AC=BC
∠ACD=∠BCE
CD=CE,
∴△ACD≌△BCE(SAS);
(2)∵AC=BC=3,∠ACB=90°,由勾股定理得:AB=3
2,
又∵DB=AB,
∴AD=2AB=6
2,
∵△ACD≌△BCE;
∴BE=AD=6
2,
故答案为:6
2.
如图,在等腰三角形ABC中,∠ACB=90°,AC=BC.点D是AB上一点(与点B不重合),以CD为边作等腰直角三角形D
已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长
如图 已知在△abc中,角acb=90°,cd垂直ab于点d,点e在ac上,ce=bc,过e点作ac的垂线,交cd的延长
如图,已知在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,说明AC^2/BC^2=AD/DB.
如图在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连
如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD将线段CD绕点C顺时针旋转90°至CE的位置连
在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,点P是CD的中点,连接AP并延长交边BC于点E,EF⊥AB,
如图,在△ABC中∠ACB=90°,点D在AB上,且CD平分∠ACB,过点D作DE⊥AC,DF⊥BC,垂足分别为点E、F
如图,在△ABC中,AB=AC,延长BC至D使CD=BC,点E在AC上,过E作EF∥CD,过C作CG∥AB交EF于G,连
圆中的计算求长度.如图,Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交斜边AB于点D,E为弧CD的中点,延长CE
如图1,已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙O于点E,连接AE
如图,在RT△ABC中,∠ACB=90°,点D、E、F分别为AB、BC、AC的中点 求证CD=EF