作业帮 > 数学 > 作业

函数f(x)在闭区间[0,1]连续,求证:∫(0-1)dx∫(x-1)f(x)f(y)dy=1∕ 2[∫(0-1)f(x

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 07:41:21
函数f(x)在闭区间[0,1]连续,求证:∫(0-1)dx∫(x-1)f(x)f(y)dy=1∕ 2[∫(0-1)f(x)dx]2
(帮忙解释一下第一个等号后面的等式是怎么得来的?)
∫(0,1)dx∫(x,1)f(x)f(y)dy
=∫(0,1)dy∫(0,y)f(x)f(y)dx
=∫(0,1)f(y)dy[∫(0,1)f(x)dx+∫(1,y)f(x)dx]
=∫(0,1)f(y)dy∫(0,1)f(x)dx+∫(0,1)f(y)dy∫(1,y)f(x)dx
=A∫(0,1)f(y)dy-∫(0,1)f(y)dy∫(y,1)f(x)dx
=A²-∫(0,1)dx∫(x,1)f(x)f(y)dy
所以∫(0,1)dx∫(x,1)f(x)f(y)∫dy=A²/2
其中:∫(0,1)f(x)dx=A
你能帮我解释一下第一步:
∫(0,1)dx∫(x,1)f(x)f(y)dy
=∫(0,1)dy∫(0,y)f(x)f(y)dx
是怎么的来的吗?
这个是二重积分交换累次积分顺序
自己作个图然后交换一下积分顺序就可以了