函数f(x)在闭区间[0,1]连续,求证:∫(0-1)dx∫(x-1)f(x)f(y)dy=1∕ 2[∫(0-1)f(x
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 07:41:21
函数f(x)在闭区间[0,1]连续,求证:∫(0-1)dx∫(x-1)f(x)f(y)dy=1∕ 2[∫(0-1)f(x)dx]2
(帮忙解释一下第一个等号后面的等式是怎么得来的?)
∫(0,1)dx∫(x,1)f(x)f(y)dy
=∫(0,1)dy∫(0,y)f(x)f(y)dx
=∫(0,1)f(y)dy[∫(0,1)f(x)dx+∫(1,y)f(x)dx]
=∫(0,1)f(y)dy∫(0,1)f(x)dx+∫(0,1)f(y)dy∫(1,y)f(x)dx
=A∫(0,1)f(y)dy-∫(0,1)f(y)dy∫(y,1)f(x)dx
=A²-∫(0,1)dx∫(x,1)f(x)f(y)dy
所以∫(0,1)dx∫(x,1)f(x)f(y)∫dy=A²/2
其中:∫(0,1)f(x)dx=A
你能帮我解释一下第一步:
∫(0,1)dx∫(x,1)f(x)f(y)dy
=∫(0,1)dy∫(0,y)f(x)f(y)dx
是怎么的来的吗?
(帮忙解释一下第一个等号后面的等式是怎么得来的?)
∫(0,1)dx∫(x,1)f(x)f(y)dy
=∫(0,1)dy∫(0,y)f(x)f(y)dx
=∫(0,1)f(y)dy[∫(0,1)f(x)dx+∫(1,y)f(x)dx]
=∫(0,1)f(y)dy∫(0,1)f(x)dx+∫(0,1)f(y)dy∫(1,y)f(x)dx
=A∫(0,1)f(y)dy-∫(0,1)f(y)dy∫(y,1)f(x)dx
=A²-∫(0,1)dx∫(x,1)f(x)f(y)dy
所以∫(0,1)dx∫(x,1)f(x)f(y)∫dy=A²/2
其中:∫(0,1)f(x)dx=A
你能帮我解释一下第一步:
∫(0,1)dx∫(x,1)f(x)f(y)dy
=∫(0,1)dy∫(0,y)f(x)f(y)dx
是怎么的来的吗?
这个是二重积分交换累次积分顺序
自己作个图然后交换一下积分顺序就可以了
自己作个图然后交换一下积分顺序就可以了
设f(x)在【0,1】上连续且∫(0,1)f(x)dx=A,证明∫(0,1)dx∫(x,1)f(x)f(y)dy=A∧2
设函数f(x)在[0,1]上连续,证明:∫(0->1)dx∫(0->1)dy∫(x->y)f(x)f(y)f(z)dz=
高数题,设函数f(x)在区间(0,1)上连续,则定积分【从-1到1】{[f(x)+f(-x)+x]x}dx=
设函数f(x)在[0,1]有二阶连续导数 求 ∫(0积到1)[2f(x)+x(1-x)f''(x)]dx
已知函数f(x)连续,且f(x)=x-∫上1下0f(x)dx,求函数f(x)
求函数f(x)在[0,1]上可导,且y=f(x)sin2x+f(x)cosx²,求dy/dx 高等数学(理工)
若df(x,y)=(2x-y)dx+(2y-x)dy 且f(0,0)=1 试求函数f(x,y)
设f为[0,+∞)上连续的严格递增函数,f(0)=0证明:ab≤∫0到a f(x)dx+∫0到b f-1(y)dy (-
∫(上1下0)dx∫(上x下x^2)f(x,y)dy=?
f(x)=x+2∫f(t)dt,f(x)连续,求f(x) 那个积分是定积分区间是(0,1)
求证:函数f(x)=x+1/x,在区间(0,1)上是减函数
设函数f(x)在区间[0,1]上连续,证明∫[∫f(t)dt]dx=∫(1-x)f(x)dx