设n阶矩阵A=(a1,a2…,an)的行列式|A|≠0, A的前n-1列构成的n*(n-1)矩阵记为A1=(a1,a2…
设A为n阶矩阵,a1,a2,a3是n维列向量,且a1不等于0,Aa1=a1,Aa2=a1+a2,A
设a1,a2为n维列向量,A为n阶正交矩阵,证明:(1)[Aa1,Aa2]=[a1,a2] (2){Aa1}={a1}
设a1,a2为n维列向量,A为n阶正交矩阵,证明[Aa1,Aa2]=[a1,a2]
设A为n阶矩阵,a1,a2,...an为n维列向量,an!=0,Aa1=a2,...Aan=0,求证
n阶非奇异矩阵A的列向量为a1,a2...an,n阶矩阵B的列向量为b1 b2...bn若b1=a1+a2...bn=a
求分块矩阵行列式的值设A=(a1,a2,a3,m),B=(a1,a2,a3,n)都是四阶方阵的列向量分块矩阵,已知|A|
A是n阶矩阵,a1,a2,.an是线性无关的n维向量,满足Aai=ai+1(i从1取到n-1),Aan=a1,求A行列式
设A为n阶矩阵,r(A)=1,求证:(1)A=(a1 a2 .an)(列向量)*(b1,b2.bn ) (2) A^2=
设a1,a2…an是1,2…,n的一个排列,求证1/2+2/3+..+(n-1)/n≤a1/a2+a2/a3+...+a
已知数列an的前n项和为Sn=n^2+2n,求和:1/(a1*a2)+1/(a2*a3)+...+1/(an*a(n+1
设A,B为N阶方阵,E为单位矩阵,a1,a2,.an,为B的N个特征值,且存在可逆矩阵P使B=PAP^(-1)-p^(-
设数列[an}的前n项和为Sn,a1=a ,a2=p(p>0),Sn=n(an-a1)/2