椭圆的一道题 在线等已知椭圆 (x^2/a^2)+y^2=1,直线l与椭圆交于A、B两点,M是线段AB的中点,连结OM并
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 19:40:12
椭圆的一道题 在线等
已知椭圆 (x^2/a^2)+y^2=1,直线l与椭圆交于A、B两点,M是线段AB的中点,连结OM并延长交椭圆于点C.
⑴设直线AB与直线OM的斜率分别为K1、K2,且K1*K2=-1/4,求椭圆的离心率.
⑵若直线AB经过椭圆的右焦点F,切四边形OACB是平行四边形,求直线AB的斜率的取值范围.
第1小题已算出,a=2 c=√ 3
帮忙算下第2小题
已知椭圆 (x^2/a^2)+y^2=1,直线l与椭圆交于A、B两点,M是线段AB的中点,连结OM并延长交椭圆于点C.
⑴设直线AB与直线OM的斜率分别为K1、K2,且K1*K2=-1/4,求椭圆的离心率.
⑵若直线AB经过椭圆的右焦点F,切四边形OACB是平行四边形,求直线AB的斜率的取值范围.
第1小题已算出,a=2 c=√ 3
帮忙算下第2小题
第1小题已算出,a=2 c=√ 3
所以,椭圆方程为:x^2/4+y^2=1
F坐标为:(√3,0)
设AB斜率为k,则直线方程为:y=k(x-√3)
代入x^2/4+y^2=1得:
x^2/4+k^2(x-√3)^2=1
(1+4k^2)x^2-8√3k^2x+12k^2-4=0
(x1+x2)/2=4√3k^2/(1+4k^2),
(y1+y2)/2=k(4√3k^2/(1+4k^2)-√3)= - √3k/(1+4k^2)
即:M点坐标为(4√3k^2/(1+4k^2),- √3k/(1+4k^2)
)
OACB是平行四边形,所以,M是OC中点
所以,C点坐标为(8√3k^2/(1+4k^2),- 2√3k/(1+4k^2)
C在椭圆上,
所以,48k^4/(1+4k^2)^2+12k^2/(1+4k^2)^2=1
32k^4+4k^2-1=0
(8k^2-1)(4k^2+1)=0
k^2=1/8
k=√2/4,或,k=-√2/4
所以,椭圆方程为:x^2/4+y^2=1
F坐标为:(√3,0)
设AB斜率为k,则直线方程为:y=k(x-√3)
代入x^2/4+y^2=1得:
x^2/4+k^2(x-√3)^2=1
(1+4k^2)x^2-8√3k^2x+12k^2-4=0
(x1+x2)/2=4√3k^2/(1+4k^2),
(y1+y2)/2=k(4√3k^2/(1+4k^2)-√3)= - √3k/(1+4k^2)
即:M点坐标为(4√3k^2/(1+4k^2),- √3k/(1+4k^2)
)
OACB是平行四边形,所以,M是OC中点
所以,C点坐标为(8√3k^2/(1+4k^2),- 2√3k/(1+4k^2)
C在椭圆上,
所以,48k^4/(1+4k^2)^2+12k^2/(1+4k^2)^2=1
32k^4+4k^2-1=0
(8k^2-1)(4k^2+1)=0
k^2=1/8
k=√2/4,或,k=-√2/4
过椭圆x^2/a^2+y^2/b^2=1的右焦点F作斜率为1的直线l,交椭圆于A、B两点,M为线段AB的中点,射线OM交
一道圆锥曲线的题椭圆在X轴上,过椭圆的右焦点F作斜率为1的直线l,交椭圆于A,B两点,M为线段AB的中点,射线OM交椭圆
已知椭圆x^2/a^2+y^2/b^2=1与直线y=x+1交于AB两点,线段AB的中点为M,若OM的斜率KOM=—1/2
椭圆的性质题!椭圆E:ax2+by2=1与直线x+y=1交于A,B两点,M是AB中点,如果|AB|=2,且OM的斜率为.
已知中心在原点,焦点在x轴上的椭圆与直线x+y-1=0交于A,B两点,M为AB中点,OM斜率为0.25,椭圆的短轴长为2
已知椭圆C:x^2/8+y^2=1,左焦点F(-2,0),若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点
已知椭圆C:x^2/4+y^2=1,设直线l:y=x/2+m与椭圆交于A B两点,线段AB的垂直平分线交X轴与点T,当m
已知椭圆mx^2+ny^2=1与直线x+y=1相交于A,B两点,M是线段AB的中点,且/AB/=二倍根号二,OM的斜率为
已知椭圆x^2/4+y^2/3=1,过椭圆的右焦点的直线l交椭圆于A,B两点,求线段AB的中点的轨迹方程.
椭圆ax+by=1(a>0,b>0)与直线x+y=1交于AB两点,M为AB中点,直线OM的斜率为2,OA⊥OB,求椭圆方
已知椭圆(焦点在X轴上)与直线X+Y-1=0交于A. B两点,M为线段AB的中点,且直线OM的一个方向向量为
已知P(1,1)为椭圆X^2/4+Y^2/3=1内一点,过点P作直线L交椭圆与A、B两点,若点P为线段AB的中点,求L的