暗示
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 05:38:10
解题思路: 此题考查了切线的性质、圆周角定理以及圆的内接四边形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
解题过程:
解:(Ⅰ)如图①,连接OC,
∵直线l与⊙O相切于点C,
∴OC⊥l,
∵AD⊥l,
∴OC∥AD,
∴∠OCA=∠DAC,
∵OA=OC,
∴∠BAC=∠OCA,
∴∠BAC=∠DAC=30°;
(Ⅱ)如图②,连接BF,
∵AB是⊙O的直径,
∴∠AFB=90°,
∴∠BAF=90°-∠B,
∴∠AEF=∠ADE+∠DAE=90°+18°=108°,
在⊙O中,四边形ABFE是圆的内接四边形,
∴∠AEF+∠B=180°,
∴∠B=180°-108°=72°,
∴∠BAF=90°-∠B=90°-72°=18°.
解题过程:
解:(Ⅰ)如图①,连接OC,
∵直线l与⊙O相切于点C,
∴OC⊥l,
∵AD⊥l,
∴OC∥AD,
∴∠OCA=∠DAC,
∵OA=OC,
∴∠BAC=∠OCA,
∴∠BAC=∠DAC=30°;
(Ⅱ)如图②,连接BF,
∵AB是⊙O的直径,
∴∠AFB=90°,
∴∠BAF=90°-∠B,
∴∠AEF=∠ADE+∠DAE=90°+18°=108°,
在⊙O中,四边形ABFE是圆的内接四边形,
∴∠AEF+∠B=180°,
∴∠B=180°-108°=72°,
∴∠BAF=90°-∠B=90°-72°=18°.