作业帮 > 数学 > 作业

已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率为√6/3,右焦点为(2√2,0)

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 04:00:42
已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率为√6/3,右焦点为(2√2,0)
斜率为1的直线l与椭圆G交与A,B两点,以AB为底边作等腰三角形,顶点为P(-3,2)
(1)求椭圆G的方程
(2)求△PAB的面积
(1)c/a=√6/3,c=2√2,得a=2√3,a²=12,b²=4
于是椭圆方程为x²/12+y²/4=1
(2)设AB中点为D(x0,y0),直线AB方程为y=x+b
联立方程得4x²+6bx+3b²-12=0
x1+x2=-3b/2,y1+y2=x1+x2+2b=b/2
于是x0=-3b/4,y0=b/4
而PD垂直AB,所以PD斜率为-1
[(1/4)b-2]/[(-3/4)b+3]=-1,得b=2
于是直线AB方程为y=x+2,|AB|=(√2)√[(x1+x2)²-4x1x2]
x1x2=(3b²-12)/4=0,x1+x2=-3b/4=-3/2,得|AB|=(3/2)√2
|PD|=|-3-2+2|/√2=(3/2)√2
S△PAB=(1/2)|PD|*|AB|=9/4