作业帮 > 英语 > 作业

英语翻译To scatter all MFP ranges from nano- to micro-length sca

来源:学生作业帮 编辑:作业帮 分类:英语作业 时间:2024/07/13 21:10:36
英语翻译
To scatter all MFP ranges from nano- to micro-length scales,all-scale hierarchical architectures are needed.This means that solid solution point defects,nanostructures and grain boundary interfaces must all be integrated in a single sample,as shown in Fig.4(a).All-scale hierarchical architectures have the potential to significantly reduce the thermal conductivity down to the minimum theoretical limit.17 Recently,the contributions to phonon scattering of atomic-,nano- and meso-scales,structures sorted by the MFP range have been calculated in Si6,61,62 and PbTe,63 as shown in Fig.4(b).This study clearly showed that in Si \x0225% of the lattice thermal conductivity value is contributed by phonon modes with a MFP of less than 5 nm,which can be primarily attributed to scattering by a combination of atomicscale
solid-solution point defects.Approximately 55% of the thermal conductivity is contributed by phonon modes withMFPs between 5 and 100 nm,which can be scattered by nano-scale precipitates.57 Finally,the remaining \x0220% of the lattice thermal conductivity is contributed by phonon modes withMFPs
of 0.1–1.0 mm.The mesoscale grain structure is comparable in size to these longMFPs and thus can scatter a notable fraction of these additional phonons.57 Therefore,all length-scale (panoscopic)
structures in one bulk material can strongly scatter a broader spectrum of heat-carrying phonons which should be the main design principle for the future thermoelectric materials.
散射所有MFP范围从纳米micro-length尺度,all-scale分层架构是必要的.这意味着固溶体点缺陷、纳米结构和晶界的接口都必须被整合在一个示例中,如图4所示(一个).All-scale分层架构有可能显著降低热导率降至最低的理论极限.17日最近,声子散射的贡献原子、纳米,细观尺度结构按MFP范围在Si6计算,61年,62年和63年PbTe,如图4所示(b).这项研究清楚地表明,在Si 25%的晶格热导率值是由声子模式的MFP小于5纳米,可以主要归因于散射atomicscale的结合固溶体点缺陷.大约55%的热导率是由声子模式withMFPs 5至100纳米,这可以通过纳米级分散沉淀.57最后,剩下的20%的晶格热导率是由withMFPs声子模式0.1 - -1.0毫米,中尺度晶粒结构体积可比这些longMFPs,因此可以这些额外的声子的散射一个显著的零头.因此,57所有长度尺度(panoscopic)结构在一个散装材料可以强烈散射更广泛的载热声子谱的主要设计原则应该是未来的热电材料.