记公差d≠0的等差数列{an}的前n项和为Sn,一直a1=2+根号2,S3=12+3根号2.记bn=an-根号2,若自然
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 04:45:11
记公差d≠0的等差数列{an}的前n项和为Sn,一直a1=2+根号2,S3=12+3根号2.记bn=an-根号2,若自然数n1,n2…
记bn=an-根号2,若自然数n1,n2…,nk…,满足1≤n1≤n2≤……≤nk≤……,并且bn1,bn2,…,bnk,…,成等比数列,其中n1=1,n2=3,求nk(用k表示)
记bn=an-根号2,若自然数n1,n2…,nk…,满足1≤n1≤n2≤……≤nk≤……,并且bn1,bn2,…,bnk,…,成等比数列,其中n1=1,n2=3,求nk(用k表示)
a(n)=a+(n-1)d=2+2^(1/2) + (n-1)d.
s(n) = na + n(n-1)d/2 = n[2+2^(1/2)] + n(n-1)d/2,
12 + 3(2)^(1/2) = s(3) = 3[2+2^(1/2)] + 3d,d = 2.
a(n) = 2+2^(1/2) + 2(n-1).
b(n) = a(n) - 2^(1/2) = 2+2(n-1)=2n.
b[n(k)] = 2n(k) = b[n(1)]*q^(k-1) = 2n(1)*q^(k-1) = 2q^(k-1),
b[n(2)] = 2n(2) = 6 = 2q,q = 3.
b[n(k)] = 2n(k) = 2q^(k-1) = 2*3^(k-1),
n(k) = 3^(k-1)
s(n) = na + n(n-1)d/2 = n[2+2^(1/2)] + n(n-1)d/2,
12 + 3(2)^(1/2) = s(3) = 3[2+2^(1/2)] + 3d,d = 2.
a(n) = 2+2^(1/2) + 2(n-1).
b(n) = a(n) - 2^(1/2) = 2+2(n-1)=2n.
b[n(k)] = 2n(k) = b[n(1)]*q^(k-1) = 2n(1)*q^(k-1) = 2q^(k-1),
b[n(2)] = 2n(2) = 6 = 2q,q = 3.
b[n(k)] = 2n(k) = 2q^(k-1) = 2*3^(k-1),
n(k) = 3^(k-1)
设数列{an}是首项为a1(a1>0),公差为2的等差数列,前n项和为Sn,且根号S1,根号S2,根号S3成等差数列,
等差数列an的前n项和为sn,a1=1+根号2,s3=9+3根号2
已知等差数列{ an}的前几项和为Sn,a1=1+根号2 S3=9+3根号2 设 bn=Sn/n(n属于正整数 ) 求证
已知等差数列{an}的前n项之和为Sn,a1=1+根号2.S3=9+3根号2
设数列an是首项为a1(a1>0),公差为2的等差数列,其前n项和为Sn,且根号S1,根号S2.根号S3成等差数列.求a
#高考提分#设数列{an}是首项为a1(a1>0),公差为2的等差数列,前n项和为Sn,且根号S1,根号S2,根号S3成
已知等差数列{an}的前n项和为sn,a1=1+根号2,S3=9+3倍的根号3求数列的通项公式和前n项和sn,..
已知等差数列{an}前n项和为Sn,公差d≠0,且S3+S5=50,a1,a4,a13,成等比数列 设{bn/an}是首
设各项均为正数的数列{an}的前n项和为Sn,已知2an=a1+a3 数列{根号Sn}是公差为d的等差数列
已知数列{an}是公差为d的等差数列,d≠0且a1=0,bn=2^(an)(n属于N*),Sn是{bn}的前n项和,Tn
已知等差数列{an}前n项和为Sn,公差d≠0,且S3+S5=50,a1,a4,a13,成等比数列 (2)若从数列
设数列{an}是首项为a1(a1>0),公差为2的等差数列,其前n项和为Sn,且根号S1,S2,S3成等差数列.求数列{