不等式证明.若xi是正实数,x1+x2+```+xi=1,求证(x1+1/x1)(x2+1/x2)```(xn+1/xn
已知正实数xi:x1*x2*x3*x4*...*xn=1.求证:[1/(n-1+x1)]+[1/(n-1+x2)]+..
设xi∈R+(i=1,2,n),求证:x1^x1x2^x2,xn^xn≥(x1x2,xn)^1/n(x1+x2+,+xn
设x1,x2,...,xn属于正实数且x1+x2+...+xn=1,求证:x1^2/1+x1+x2^2/1+x2+...
如何解柯西不等式已知X1,X2,...Xn是正数求证:(X1+X2+..=Xn)(1/X1+1/X2+...+Xn)小于
设x1,x2,...,xn为任意实数,求证:x1/(1+x1^2)+x2/(1+x1^2+x2^2)+...+xn/(1
设x1,x2,x3.xn都是正数,求证:x1^2/x2+x2^2/x2+.+xn-1^2/xn+xn^2/x1>=x1+
X2/X1(X1+X2)+X3/(X1+X2)(X1+X2+X3)+.Xn/(x1+x2+...Xn-1)(X1+X2.
设x1,x2,...,xn>0,(1)若1,x1,x2,...,xn,2成等差数列,则x1+x2+...+xn=____
已知xi∈R+,i=1,2,…,n 求证不等式n/(n+1)≥x1/(nx1+x2)+x2/(nx2+x3)+…+xn/
不等式证明求解已知:正数x1,x2,x3……xn 满足x1+x2+x3+……+xn=1
已知 x1 x2..xn均为整数求证:x2/√x1+x3/√x2+...xn/√xn-1+x1/√xn≥√x1+√x2+
用数学归纳法证明:xi>0 ,i=1,2,3…n若x1x2…xn=1,则x1+x2+…xn≥n