抛物线焦点弦性质证明:设AB为焦点弦,M为准线与x轴的交点,则∠AMF=∠BMF的证明.
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 09:21:14
抛物线焦点弦性质证明:设AB为焦点弦,M为准线与x轴的交点,则∠AMF=∠BMF的证明.
选用y^2=2px,(p>0)
设AB为焦点弦,M为准线与x轴的交点,F为焦点
F(0.5p,0),M(-0.5p,0)
A(2pa^2,2pa),B(2pb^2,2pb)
k(AB)=(2pa-2pb)/(2pa^2-2pb^2)=1/(a+b)
k(AF)=2pa/(2pa^2-0.5p)=4a/(4a^2-1)
k(AB)=k(AF)
1/(a+b)=4a/(4a^2-1)
4ab=-1
b=-1/(4a)
4b=-1/a,4b^2=1/(4a^2),4b^2+1=(1+4a^2)/(4a^2)
k(AM)=2pa/(2pa^2+0.5p)=4a/(4a^2+1)
k(BM)=2pb/(2pb^2+0.5p)=4b/(4b^2+1)=(-1/a)/[(1+4a^2)/(4a^2)]=-4a/(4a^2+1)
∵k(AM)=-k(BM)
∴∠AMF=∠BMF
设AB为焦点弦,M为准线与x轴的交点,F为焦点
F(0.5p,0),M(-0.5p,0)
A(2pa^2,2pa),B(2pb^2,2pb)
k(AB)=(2pa-2pb)/(2pa^2-2pb^2)=1/(a+b)
k(AF)=2pa/(2pa^2-0.5p)=4a/(4a^2-1)
k(AB)=k(AF)
1/(a+b)=4a/(4a^2-1)
4ab=-1
b=-1/(4a)
4b=-1/a,4b^2=1/(4a^2),4b^2+1=(1+4a^2)/(4a^2)
k(AM)=2pa/(2pa^2+0.5p)=4a/(4a^2+1)
k(BM)=2pb/(2pb^2+0.5p)=4b/(4b^2+1)=(-1/a)/[(1+4a^2)/(4a^2)]=-4a/(4a^2+1)
∵k(AM)=-k(BM)
∴∠AMF=∠BMF
抛物线y^2=2px(p>0),设AB为焦点弦,M为准线与x轴的交点,F为焦点,求证∠AMF=∠BMF.
证明以抛物线的焦点弦为直径的圆与抛物线的准线相切
1.已知ab是经过抛物线y2=2px(p>0)的焦点f且与两坐标轴不垂直的一条弦,点M(-1,0)满足角AMF=角BMF
已知抛物线y2=4x的焦点为F,准线与x轴的交点为M,N为抛物线上的一点,则满足|NF|=32|MN|,则∠NMF= _
一道高中抛物线证明题求证:以抛物线的焦点弦为直径的圆必与抛物线准线相切.
已知抛物线y2=4x的焦点为F,准线与x轴的交点M,N为抛物线上的一点,且满足|MN|=2|NF|,则∠NMF=____
已知抛物线y^2=-4x的焦点为F,其准线与x轴交于点M,过M作斜率为K的直线l与抛物线交于A、B两点,弦AB的.
设抛物线y^2=4x的焦点为F,其准线方程与x轴交于点C,过点F作它的弦AB,若角CBF=90度,则|AF|-|BF|的
设抛物线x^2=-4y的准线与y轴的焦点为C,过点C作直线l交抛物线A、B两点,求线段AB中点M的轨迹方程.
1.设抛物线x^2=-4y的准线与y轴的焦点为C,过点C作直线l交抛物线A、B两点,求线段AB中点M的轨迹方程.
已知抛物线y平方=4x的焦点为F,准线与x轴的交点为M,N为抛物线上的一点,且满足|NF|,则MN所在直线的斜率为?
设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明直