如图,在四棱锥S-ABCD中,平面SAD⊥平面ABCD.四边形ABCD为正方形,且P 为AD的中点,Q为SB的
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 18:49:05
如图,在四棱锥S-ABCD中,平面SAD⊥平面ABCD.四边形ABCD为正方形,且P 为AD的中点,Q为SB的中点.
(Ⅰ)求证:CD⊥平面SAD;
(Ⅱ)求证:PQ∥平面SCD;
(Ⅲ)若SA=SD,M为BC中点,在棱SC上是否存在点N,使得平面DMN⊥平面ABCD,并证明你的结论.
(Ⅰ)求证:CD⊥平面SAD;
(Ⅱ)求证:PQ∥平面SCD;
(Ⅲ)若SA=SD,M为BC中点,在棱SC上是否存在点N,使得平面DMN⊥平面ABCD,并证明你的结论.
证明:(Ⅰ)因为四边形ABCD为正方形,则CD⊥AD.…(1分)
又平面SAD⊥平面ABCD,
且面SAD∩面ABCD=AD,
所以CD⊥平面SAD.…(3分)
(Ⅱ)取SC的中点R,连QR,DR.
由题意知:PD∥BC且PD=
1
2BC.…(4分)
在△SBC中,Q为SB的中点,R为SC的中点,
所以QR∥BC且QR=
1
2BC.
所以QR∥PD且QR=PD,
则四边形PDRQ为平行四边形.…(7分)
所以PQ∥DR.又PQ⊄平面SCD,DR⊂平面SCD,
所以PQ∥平面SCD. …(10分)
(Ⅲ)存在点N为SC中点,使得平面DMN⊥平面ABCD. …(11分)
连接PC、DM交于点O,连接PM、SP,
因为PD∥CM,并且PD=CM,
所以四边形PMCD为平行四边形,所以PO=CO.
又因为N为SC中点,
所以NO∥SP.…(12分)
因为平面SAD⊥平面ABCD,平面SAD∩平面ABCD=AD,并且SP⊥AD,
所以SP⊥平面ABCD,
所以NO⊥平面ABCD,…(13分)
又因为NO⊂平面DMN,
所以平面DMN⊥平面ABCD.…(14分)
又平面SAD⊥平面ABCD,
且面SAD∩面ABCD=AD,
所以CD⊥平面SAD.…(3分)
(Ⅱ)取SC的中点R,连QR,DR.
由题意知:PD∥BC且PD=
1
2BC.…(4分)
在△SBC中,Q为SB的中点,R为SC的中点,
所以QR∥BC且QR=
1
2BC.
所以QR∥PD且QR=PD,
则四边形PDRQ为平行四边形.…(7分)
所以PQ∥DR.又PQ⊄平面SCD,DR⊂平面SCD,
所以PQ∥平面SCD. …(10分)
(Ⅲ)存在点N为SC中点,使得平面DMN⊥平面ABCD. …(11分)
连接PC、DM交于点O,连接PM、SP,
因为PD∥CM,并且PD=CM,
所以四边形PMCD为平行四边形,所以PO=CO.
又因为N为SC中点,
所以NO∥SP.…(12分)
因为平面SAD⊥平面ABCD,平面SAD∩平面ABCD=AD,并且SP⊥AD,
所以SP⊥平面ABCD,
所以NO⊥平面ABCD,…(13分)
又因为NO⊂平面DMN,
所以平面DMN⊥平面ABCD.…(14分)
如图,在四棱锥P‐ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,E为PD的中点.求证:
如图,已知四棱锥P-ABCD中,底面四边形为正方形,侧面PDC为正三角形,且平面PDC⊥平面ABCD,E为PC中点.求
如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥平面ABCD,且SA=SB,点E为AB的中点,点F为SC的中点
如图,在四棱锥P-ABCD中,四边形ABCD为正方形,P点在平面ABCD内的射影为A,且PA=AB=2,E为PD中点
在四棱锥p-abcd中,地面abcd是边长为2的正方形,pd垂直平面abcd,且pd=ad,e为pd的中点
如图,在四棱锥P-ABCD中,四边形ABCD为正方形,P点在平面ABCD内的射影为A,则二面角
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AD=CD,DB平分∠ADC,E为PC的中点.
如图,在四棱锥P-ABCD中,PA=AB=AD=1,四边形ABCD是正方形,PA⊥平面ABCD,求四棱锥的表面积
如图,四棱锥P-ABCD中,四边形ABCD为矩形,平面PAD垂直平面ABCD,E,F分别为PC和BD的中点
如图,四棱锥P—ABCD的底面ABCD为正方形,PD⊥底面ABCD,PD=AD 求证(1)AD∥平面PBC;&
如图,在四棱锥P-ABCD中.底面ABCD为正方形,且PD垂直平面ABCD,PD=AB=1,E.F分别是PB,AD的中点
如图,在四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,且PD = AB = a,E是PB的中点,F为A