已知Fx=x^2+alnx,当a=-2时,求Fx的单调增区间.若Gx=fx+2/x在【1,+$)上为单调函数,求a范围.
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 02:18:21
已知Fx=x^2+alnx,当a=-2时,求Fx的单调增区间.若Gx=fx+2/x在【1,+$)上为单调函数,求a范围.
求导就可以了,导函数大于0为增区间,导函数小于0为减区间.
F‘=2x-2/x=(2x^2-2)/x=2(x^2-1)/x 因为x的取值范围为(0,正无穷) (因为lnx中x大于0)
若x^2-1>0,则x>1,所以增区间为(1,正无穷)
由题易知:Gx=x^2+alnx+2/x
G’x=2x + a/x - 2/x^2 因为在[1,正无穷)为单调增函数,所以G‘x在该定义域区间内恒大于0
所以2x + a/x - 2/x^2 恒大于0.(2x + a/x - 2/x^2 >=0)
所以a恒大于-2(1+x^3)/x 即 a>=2(1-x^3)/x x属于[1,正无穷)
记Hx=2(1-x^3)/x x属于[1,正无穷)
所以a大于等于Hx的最大值,因为在定义域内,Hx为单调减函数
所以max(Hx)=H(1)=0
所以a>=0 (经检验a=0带入原函数符合)
F‘=2x-2/x=(2x^2-2)/x=2(x^2-1)/x 因为x的取值范围为(0,正无穷) (因为lnx中x大于0)
若x^2-1>0,则x>1,所以增区间为(1,正无穷)
由题易知:Gx=x^2+alnx+2/x
G’x=2x + a/x - 2/x^2 因为在[1,正无穷)为单调增函数,所以G‘x在该定义域区间内恒大于0
所以2x + a/x - 2/x^2 恒大于0.(2x + a/x - 2/x^2 >=0)
所以a恒大于-2(1+x^3)/x 即 a>=2(1-x^3)/x x属于[1,正无穷)
记Hx=2(1-x^3)/x x属于[1,正无穷)
所以a大于等于Hx的最大值,因为在定义域内,Hx为单调减函数
所以max(Hx)=H(1)=0
所以a>=0 (经检验a=0带入原函数符合)
已知函数fx=e分之x2,gx=2alnx 求Fx=fx-gx的单调区间,若Fx有最值,求出最值.
已知函数fx=x2-2x,gx=x2-2x(x∈【2,4】} 求fx,gx的单调区间 求fx,gx的最小值
已知函数fx=(2ax-1)/(2x+1),当a=1时,求fx的单调区间
已知函数fx=|x|(x-a),a为实数.(1)讨论fx在R上的奇偶性; (2)当a小于等于0时,求函数fx的单调区间;
已知函数fx=(2-a)x-2(1+Inx)+a(1当a=1时,求fx单调区间 (2)若fx在区间(0,1/2)上无零点
已知函数fx=ln(x)-ax(a∈R)1.当a=2时,求fx单调区间.2.当a>0时,求fx在[1,2]上最小值
已知函数fx=(x²+ax+a)ex(a≤2,x∈R)当a=1时,求fx的单调区间
已知数数fx=ax+lnx,(1)当a=-1时,求函数fx的单调区间(2)若fx在区间(0,e]上的最大值为-3,求实数
已知函数fx=x+alnx/x,其中a为实常数.当a=-1时,求函数gx=fx-x的极值
已知函数fx=x2+alnx,1若a=1,求单调区间 2若fx在 一到正无穷的单增,求a的取值范围
已知函数fx=alnx-ax-3(a属于R)求函数fx的单调区间
已知函数fx=2/3x3-1/2ax2+x+2 若fx在R上单调递增,求a的取值范围