来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/11 02:26:21
线性代数问题(有关特征值、方阵的对角化)
设n阶实方阵A满足A^2-2A-3E=0,则下属选择错误的是
a.3是A的特征值
b.A是可逆矩阵
c.A可以相似对角化
d.-1不是A的特征值
a和d是错误的
b和c是正确的
特征值满足(λ+1)(λ-3)=0,特征值只可能是-1或3(但不一定是哪一个),不可能是0,所以A一定可逆(因为|A|=特征值乘积).
选项c难度很高.
首先要知道两个公式:(1)r(A+B)