等差数列an的前n项和为Sn,若S10=20,S20=240,则当m,n取正数时,代数式(n*am-m*an)/am*a
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 08:48:43
等差数列an的前n项和为Sn,若S10=20,S20=240,则当m,n取正数时,代数式(n*am-m*an)/am*an的最大值为?
a(n) = a + (n-1)d,
s(n) = na + n(n-1)d/2.
20 = s(10) = 10a + 45d,4 = 2a + 9d.2a = 4 - 9d.
240 = s(20) = 20a + 190d.24 = 2a + 19d = 4 - 9d + 19d.20 = 10d.d = 2.
2a = 4 - 9d = - 14.a = -7.
a(n) = -7 + 2(n-1) = 2n - 9.
[na(m) - ma(n)]/[a(m)a(n)] = [n(2m-9) - m(2n-9)]/[(2n-9)(2m-9)]
= [2mn-9n - 2mn+9m]/[(2n-9)(2m-9)]
= 9(m-n)/[(2n-9)(2m-9)]
= (9/2)[2m-9-2n+9]/[(2n-9)(2m-9)]
= (9/2)[1/(2n-9) + 1/(9-2m)]
10)单调递减.1/(2n-9)
s(n) = na + n(n-1)d/2.
20 = s(10) = 10a + 45d,4 = 2a + 9d.2a = 4 - 9d.
240 = s(20) = 20a + 190d.24 = 2a + 19d = 4 - 9d + 19d.20 = 10d.d = 2.
2a = 4 - 9d = - 14.a = -7.
a(n) = -7 + 2(n-1) = 2n - 9.
[na(m) - ma(n)]/[a(m)a(n)] = [n(2m-9) - m(2n-9)]/[(2n-9)(2m-9)]
= [2mn-9n - 2mn+9m]/[(2n-9)(2m-9)]
= 9(m-n)/[(2n-9)(2m-9)]
= (9/2)[2m-9-2n+9]/[(2n-9)(2m-9)]
= (9/2)[1/(2n-9) + 1/(9-2m)]
10)单调递减.1/(2n-9)
已知{an}为等差数列,Sn为{an}的前n项和,n∈N*,若a3=16,S20=20,则S10值为______.
等差数列{an}前n项和为sn,公差为d1),使得am=sm,则当n>m(n∈N*)时sn和an(填,=)
等差数列{an}前n项和Sn,若S10=S20,则S30=______.
若等差数列{An}的前m项和为Sm,前n项和为Sn,且Sm:Sn=m²:n²,则Am:An=?
已知﹛an﹜是等差数列,Sn为其前n项和,n∈正整数.若a3=16,S20=20,则S10的值是多少
等差数列{an}的前n项和为Sn,公差d<0.若存在正整数m(m≥3),使得am=Sm,则当n>m(n∈N+)时,有an
在等差数列an中,前N项和为Sn,S10=20,S20=30,则S30=
已知an为等差数列,sn为其前n项的和,若sm/sn=m平方/n平方,则am/am=?
已知等差数列{an}前n项和为Sn,若Sm/Sn=m^2/n^2,则am/am的值为?
已知等差数列an的前n项和为Sn,a2=4,S10=110,则当Sn-an取最小值时,an=
已知等差数列{an},sn为其前n项和,且s10=S20,则S30=______.
等差数列的前n项和为Sn,且a1>0,若存在正整数m(m≥3),使得am=Sm,则当n>m时,Sn与an 的大小关系