平面直角坐标系xoy中,已知以M为圆心的圆M经过F1(0,-c)F2(0,c)A((√3)c,0)三点其中c>0 (1)
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 10:27:00
平面直角坐标系xoy中,已知以M为圆心的圆M经过F1(0,-c)F2(0,c)A((√3)c,0)三点其中c>0 (1) 求圆M的标
平面直角坐标系xoy中,已知以M为圆心的圆M经过F1(0,-c)F2(0,c)A((√3)c,0)三点其中c>0
(1) 求圆M的标准方程(用含C的式子表示)
(2) 已知椭圆y^2/a^2+x^2/b^2=1(a>b>0)(其中a^2-b^2=c^2)的左右顶点分别为D,B,圆M与X轴的两个交点分别为A,C,且A点在B点右侧,点C在D点右侧,①求椭圆离心率的取值范围②若A,B,M,O,C,D,(O为坐标原点)依次均匀分布在X轴上,问直线MF1与直线DF2的交点是否在一条定直线上?若是,请求出这条定直线的方程;若不是,请说明理由
平面直角坐标系xoy中,已知以M为圆心的圆M经过F1(0,-c)F2(0,c)A((√3)c,0)三点其中c>0
(1) 求圆M的标准方程(用含C的式子表示)
(2) 已知椭圆y^2/a^2+x^2/b^2=1(a>b>0)(其中a^2-b^2=c^2)的左右顶点分别为D,B,圆M与X轴的两个交点分别为A,C,且A点在B点右侧,点C在D点右侧,①求椭圆离心率的取值范围②若A,B,M,O,C,D,(O为坐标原点)依次均匀分布在X轴上,问直线MF1与直线DF2的交点是否在一条定直线上?若是,请求出这条定直线的方程;若不是,请说明理由
(1)由F1(0,-c)F2(0,c),可知,圆心M在直线Y=0上,也就是在X轴上,设M(m,0),
因为圆心到圆上个点的距离等于半径r
即 MF1=MA =r 所以有等式:根号下{(m-0)^2+(0+c)^2}=根号下{(m-√3c)^2+(0-0)^2}=r
解得m=3分之根号3 乘以c【√3c/3】
r=2√3c/3
r^2=4c^2/3
标准方程 (x-m)^2+y^2=r^2(上面带进去就是了,难打,不打了)
因为圆心到圆上个点的距离等于半径r
即 MF1=MA =r 所以有等式:根号下{(m-0)^2+(0+c)^2}=根号下{(m-√3c)^2+(0-0)^2}=r
解得m=3分之根号3 乘以c【√3c/3】
r=2√3c/3
r^2=4c^2/3
标准方程 (x-m)^2+y^2=r^2(上面带进去就是了,难打,不打了)
在平面直角坐标系xoy中,已知A(3,1),C(1,0)求以点C为圆心,且经过A点的圆C的标准方程
如图,在平面直角坐标系xOy中,以点M(0,1)为圆心,以2长为半径作圆M交x轴于点A,B两点,交y轴于C,D两点,连接
已知:如图,在平面直角坐标系xOy中,点A(0,根号3),点B(1,0),点C(3,0),以点P为圆心的圆与y轴相切于点
如图所示,在直角坐标系xOy中,已知A,B,C三点的坐标分别为A(-1,5),B(-3,0),C(-4,3).点M(4,
如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(-3,0)
在平面直角坐标系xoy中,已知圆C经过a(0.2)o(0.0)d(t.0)三点.M是是线段AD上的动点,l1,l2是过点
如图,在平面直角坐标系xoy中,抛物线ax2+bx+c经过ABC三点,已知点A(-3,0)B(0,3)C(1,0)
在平面直角坐标系xoy中,椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别为F1(-c,0),F2(c
如图 在平面直角坐标系xoy中,已知抛物线y=x²+bx+c经过A(0,3),B(1,0)两点,顶点为M
在平面直角坐标系xoy中,动点P到F1(0,-√3) F2(0,√3)的距离和为4设动点P的轨迹为C.(1)求C方程 (
在平面直角坐标系xoy中,已知圆C经过A(0,2),O(0,0),D(t,0) (t>0)三点,M是线段AD上的动点,l
在平面直角坐标系中xoy中,已知点A(6,0),点B(0,6),动点C在以半径为3的圆O上