如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是弧APB上任一点(与端点A、B不重合),DE⊥AB
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 09:46:31
如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是弧APB上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.
(1)求弦AB的长;
(2)判断∠ACB是否为定值?若是,求出∠ACB的大小;否则,请说明理由.
(1)求弦AB的长;
(2)判断∠ACB是否为定值?若是,求出∠ACB的大小;否则,请说明理由.
(1)连接OA.设OP与AB的交点为F.
∵⊙O的半径为1(已知),
∴OA=1.
∵弦AB垂直平分线段OP,
∴OF=
1
2OP=
1
2,AF=BF(垂径定理),
在Rt△OAF中,AF=
OA2−OF2=
12−(
1
2)2=
3
2(勾股定理),
∴AB=2AF=
3.
(2)∠ACB是定值.
理由:连接AD,BD,OA,OB,
∵DE⊥AB于点E,点D为圆心、DE长为半径作⊙D,
∴AB与⊙D相切于E点,
又∵过点A、B作⊙D的切线,
∴⊙D是△ABC的内切圆,
∵OB=1,OF=
1
2,OF⊥AB,
∴∠FBO=30°(30°角所对的直角边是斜边的一半),
∴∠FOB=60°,
∴∠AOB=120°,
∴∠ADB=∠AOB=120°.
又⊙D是△ABC的内切圆,
∴∠DAB=
1
2∠CAB,∠DBA=
1
2∠CBA,
∴∠DAB+∠DBA=
1
2(∠CAB+∠CBA)=180°-∠ADB=60°,
∴∠CAB+∠CBA=120°,
∴∠ACB的度数为60°(三角形内角和定理).
∵⊙O的半径为1(已知),
∴OA=1.
∵弦AB垂直平分线段OP,
∴OF=
1
2OP=
1
2,AF=BF(垂径定理),
在Rt△OAF中,AF=
OA2−OF2=
12−(
1
2)2=
3
2(勾股定理),
∴AB=2AF=
3.
(2)∠ACB是定值.
理由:连接AD,BD,OA,OB,
∵DE⊥AB于点E,点D为圆心、DE长为半径作⊙D,
∴AB与⊙D相切于E点,
又∵过点A、B作⊙D的切线,
∴⊙D是△ABC的内切圆,
∵OB=1,OF=
1
2,OF⊥AB,
∴∠FBO=30°(30°角所对的直角边是斜边的一半),
∴∠FOB=60°,
∴∠AOB=120°,
∴∠ADB=∠AOB=120°.
又⊙D是△ABC的内切圆,
∴∠DAB=
1
2∠CAB,∠DBA=
1
2∠CBA,
∴∠DAB+∠DBA=
1
2(∠CAB+∠CBA)=180°-∠ADB=60°,
∴∠CAB+∠CBA=120°,
∴∠ACB的度数为60°(三角形内角和定理).
如图圆O的半径为1,点P是圆O上一点,弦AB垂直平分线段OP,点D是弧APB上任一点(与端点A B不重合),DE⊥AB于
圆综合证明题如图,圆O的半径为1,点P是圆O上一点,弦AB垂直平分OP,点D是APB上任一点(与端点A,B不重合),DE
如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是APB 上任.剩下的看图.
如图,圆O的半径为1,点P是圆O上一点,弦AB垂直平分线段OP
如图,⊙P与⊙O相交于A、B两点,⊙P经过圆心O,点C是⊙P的优弧AB上任意一点(不与点A、B重合),连接AB、AC、B
如图,等边△ABC内接于⊙O,P是弧AB上任一点(点P不与A、B重合),连AP,BP,过C作CM∥BP交PA的延长线于点
如图,⊙P与⊙O相交于A、B两点,⊙P经过圆心O,点C是⊙P的优弧上AB任意一点(不与点A、B重合),连接AB、AC、B
如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P 是弧CAD上一点(不与C、D重合),
O,A.B是平面内不共线的三点,向量OA为aOB为b设P为线段AB垂直平分线上任一点,设OP为P,a模长5b3,则a,b
O A B是平面内不共线的三点,向量OA为aOB为b设P为线段AB垂直平分线上任一点,设OP为P,a模长5b3,则a,b
如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P 是弧CAD上一点(不与C,D重合),求证:
如图,AB是⊙O的直径 弦CD垂直于AB P是弧CD上任意一点(不与点C和D重合) ∠APC=∠APD吗 为什么