作业帮 > 数学 > 作业

如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是弧APB上任一点(与端点A、B不重合),DE⊥AB

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 09:46:31
如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是弧APB上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.

(1)求弦AB的长;
(2)判断∠ACB是否为定值?若是,求出∠ACB的大小;否则,请说明理由.
(1)连接OA.设OP与AB的交点为F.
∵⊙O的半径为1(已知),
∴OA=1.
∵弦AB垂直平分线段OP,
∴OF=
1
2OP=
1
2,AF=BF(垂径定理),
在Rt△OAF中,AF=
OA2−OF2=
12−(
1
2)2=

3
2(勾股定理),
∴AB=2AF=
3.
(2)∠ACB是定值.
理由:连接AD,BD,OA,OB,
∵DE⊥AB于点E,点D为圆心、DE长为半径作⊙D,
∴AB与⊙D相切于E点,
又∵过点A、B作⊙D的切线,
∴⊙D是△ABC的内切圆,
∵OB=1,OF=
1
2,OF⊥AB,
∴∠FBO=30°(30°角所对的直角边是斜边的一半),
∴∠FOB=60°,
∴∠AOB=120°,
∴∠ADB=∠AOB=120°.
又⊙D是△ABC的内切圆,
∴∠DAB=
1
2∠CAB,∠DBA=
1
2∠CBA,
∴∠DAB+∠DBA=
1
2(∠CAB+∠CBA)=180°-∠ADB=60°,
∴∠CAB+∠CBA=120°,
∴∠ACB的度数为60°(三角形内角和定理).