定义在R上的偶函数f(x)在(0,正无穷)为增函数,x1,x2属于(-3/2,3/2),比较f(tanx1)与f(tan
定义在R上的偶函数f(x)满足:对任意的x1,x2属于(0,正无穷)(x1不等于x2)
定义在R上的偶函数f(x)满足:对任意的X1,X2属于【0,正无穷)(X1不=X2),有f(X2)-f(X1)/X2-X
定义在R上的偶函数f(x)满足:对任意的x1,x2属于[0,正无穷)(x1不等于x2),有(f(x2)-f(x1))/(
设f(X)是定义在R上的偶函数,且在【0,正无穷)上是减函数,则f(-3/4)与f(a^2-a+1)(a属于R)的大小关
定义在r上的偶函数f(x)满足:对任意x1 x2属于(负无穷,0】(x1≠x2)都有x2-x1/f(x2)-f(x1)>
定义在R上的偶函数f(x)满足:对任意的x1,x2属于(负无穷,0)(x1≠x2),有(x2-x1)(f(x2)-f(x
设函数f(x)=x²+ax是R上的偶函数 用定义证明:f(x)在(0,正无穷)上为增函数
定义在R函数y=f(x)为偶函数,且在[0,正无穷大)上单调递减,是比较f(1),f(-2),f(3)的大小
设f(x)为定义在R上的偶数,且f(x)在[0,正无穷)为增函数,则f(-2),f(-π),f(3)的大小顺序是
函数f(x)是定义在R上的奇函数,并且x属于(0,正无穷)时,f(x)=2^x,那么f(log底数为2真数为1/3)=
设f(X)是R上的偶函数,且在(—无穷大,0)上是减函数,若X10,则比较f(X1)与f(X2)的大小
f(x)是定义R上的偶函数,且f(x)在(-无穷大,0】上的增函数,比较f(-3/4)与f(2)的大小