大一求极限题求解[(a^1/n+b^1/n)/2]^n,n趋于无穷
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 14:10:39
大一求极限题求解
[(a^1/n+b^1/n)/2]^n,n趋于无穷
[(a^1/n+b^1/n)/2]^n,n趋于无穷
设 f(n) = [(a^1/n+b^1/n)/2]^n ,ln f(n) = n * ln[(a^1/n+b^1/n)/2]
令 t=1/n,n->+∞,t->0,ln f(n) = ln[(a^t + b^t)/2] / t
当t->0时,a^t -1 t * lna,b^t - 1 t * lnb
(a^t + b^t)/2 ->1,ln[(a^t + b^t)/2] (a^t + b^t)/2 -1
lim(n->∞) ln f(n)
= lim(t->0) [(a^t + b^t)/2 -1] / t
= (1/2) lim(t->0) [(a^t -1)/ t + (b^t -1)/ t]
= (1/2) (lna + lnb) = ln (ab)^(1/2)
原式 = (ab)^(1/2)
令 t=1/n,n->+∞,t->0,ln f(n) = ln[(a^t + b^t)/2] / t
当t->0时,a^t -1 t * lna,b^t - 1 t * lnb
(a^t + b^t)/2 ->1,ln[(a^t + b^t)/2] (a^t + b^t)/2 -1
lim(n->∞) ln f(n)
= lim(t->0) [(a^t + b^t)/2 -1] / t
= (1/2) lim(t->0) [(a^t -1)/ t + (b^t -1)/ t]
= (1/2) (lna + lnb) = ln (ab)^(1/2)
原式 = (ab)^(1/2)
求极限:lim((2n∧2-3n+1)/n+1)×sin n趋于无穷
n趋于正无穷求极限n^2*ln[n*sin(1/n)]
求极限,lim(1+n)(1+n^2)(1+n^4)-----(1+n^2n)=?(n趋于无穷)
求极限limn趋于无穷 1/n^2+2/n^2+...+n-1/n^2+n/n^2
[(2n+3n)/( 2n+1+3n+1)]的极限,n趋于无穷
lim(n趋于无穷)[n(n+1)/2]/n方+3n的极限是多少?
高数求极限 2^n*n!(/n^n) n趋于无穷?
求极限(1/2^n-1/2n),n趋于无穷
求极限 Lim(n趋于无穷)(n^(2/3) sinn^2)/(n-1)
求极限k^2/(n^3+k^3) n趋于无穷,k=1到n
Lim(1-3/2n)^4n+5.n趋于无穷,求极限
求极限 lim n趋于无穷 3n²+2n-1/2n²+n-10