作业帮 > 数学 > 作业

证明恒等式,1+sin4θ-cos4θ/2tanθ=1+sin4θ+cos4θ/1-tan²θ..

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 15:26:38
证明恒等式,1+sin4θ-cos4θ/2tanθ=1+sin4θ+cos4θ/1-tan²θ..
首先,记得加小括号.
要证 (1+sin4θ-cos4θ)/2tanθ=(1+sin4θ+cos4θ)/1-tan²θ
只要证 (1+sin4θ-cos4θ)/(1+sin4θ+cos4θ)=2tanθ/1-tan²θ
上式右边等于tan2θ
只要证(1+sin4θ-cos4θ)/(1+sin4θ+cos4θ)=tan2θ
又 1+sin4θ-cos4θ=(1-cos4θ)+sin4θ=2sin²2θ+2sin2θcos2θ=2sin2θ(sin2θ+cos2θ)
1+sin4θ+cos4θ=(1+cos4θ)+sin4θ=2cos²2θ+2sin2θcos2θ=2cos2θ(sin2θ+cos2θ)
两式相除 =tan2θ
证毕.