作业帮 > 综合 > 作业

在平面直角坐标系中,给定点A(1,0),B(0,-2).点C满足向量式OC=pOA qOB(p.q属于一切实数)且p-2

来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/08 09:42:02
在平面直角坐标系中,给定点A(1,0),B(0,-2).点C满足向量式OC=pOA qOB(p.q属于一切实数)且p-2q=1.设点C轨迹与双曲线(焦点在X轴上)交于M,N且以M,N为直径的圆过原点,求证:1/a2-1/b2=2
由题意可得C(p,-2q),∴c点轨迹为X+Y=1.又联立双曲线与直线,得(1/a^2-1/b^2)X^2+2X/b^2-(1/b^2+1)=0 ∴由韦达定理得X1+X2=(-2/b^2)/(1/a^2-1/b^2),X1*X2=-(1/b^2+1)/(1/a^2-1/b^2).∴中点坐标为((-1/b^2)/(1/a^2-1/b^2),(1/b^2)/2(1/a^2-1/b^2)) ∴又由弦长公式可得MN/2=R=中点坐标到原点距离=√2(X1-X2),联立求解可得1/a^2-1/b^2=2