怎样使∫tf(x^2-t^2)dt(上限x,下限0)=1/2∫f(u)du(上限x^2,下限0)
已知∫(上限x下限0)tf(2x-t)dt=0.5arctanx^2 ,f(1)=1 ,求∫(上限2下限1)f(x)dx
设函数f(x)可导,且满足f(x)=1+2x+∫(上限x下限0)tf(t)dt-x∫(上限x下限0)f(t)dt,试求函
变限积分求导问题 ∫tf(x^2-t^2)dt 上限x,下限0.设x^2-t^2=u,怎么得到-1/2∫f(u)du 上
设连续函数f(x)由方程∫(上限x.下限0)tf(t)dt=x^2+f(x)确定,求f(x)
设连续函数f(x)由方程∫(上限x.下限0)tf(t)dt=x^2+f(x)确定,求f(x) 请写出答案.
变限积分计算已知f(x)=∫(上限x^2下限1)e^(-t^2)dt,计算∫(上限1下限0)xf(x)dx
已知f(x)=x-2∫f(t)dt 上限1 下限0 求f(x)
设 f(x)=∫(上限x下限0)cost/(2π-t)dt,求∫(上限2π下限0)f(x)dx?
求极限,例题x趋于0 lim∫下限为0上限为x[∫下限为0上限为u^2arctan(1+t)dt]du/x(1-cosx
变上限积分F(x)=∫(上限x,下限0)tf(t)dt,求F(x)的导数
∫(下限1上限1/x)[f(u)/u^2]du怎么求导
设α=∫(上限x^3/2,下限0)t^6arctant²dt,β=∫(上限x,下限0)(e^t²-1