直线l 在x,y轴上截距的倒数和为常数1/m,则直线过定点___________.
已知:直线方程为(2+m)x+(1-2m)y+4-3m=0,过定点M作直线L,使夹在两坐标之间的线段被点M平分,求直线L
已知直线L的方程为:(2+m)x+(1-2m)y+4-3m=0 ,求证:直线L过定点
已知直线L的倾斜角是直线y=x+1的倾斜角的2倍且过定点P(3,3)则直线L方程式为
过定点M(0,1)作一直线l,使它夹在两已知直线l1:x-3y+10=0和l2:2x+y-8=0之间的线段被点M平分,求
已知直线l方程为(3m+2)X+(2-m)y+8=0,则当m变化时,直线l恒过的定点是A,(1,3) B(1,-3) C
点m(x y)与定点f(5 0)的距离和是它到定直线l:x=3分之16的距离的比是常数4分之5,则点m的轨迹为
已知动点P(X,Y)与两定点M(-1,0)N(1,0)连线的斜率之积等于常数-2.过定点F(0,1)的直线L与P的轨迹方
一直线过定点M(0,1),且它夹在两直线x-3y+10=0,2x+y-8=0之间的线段恰好被M平分,求直线l的方程
直线y=k(x+2)-1恒过定点A,且点A在直线1/m*x+1/n*y+8=0(m>0,n>0)上,则2m+n的最小值为
直线y+2=-根号3(1-X)的斜率和所过的定点为
(2013•绵阳二模)动点M(x,y)与定点F(l,0)的距离和它到直线l:x=4的距离之比是常数12,O为坐标原点.
直线L:Y=Kx+M和抛物线 Y^2=2px相交于A、B以AB为直径的圆过抛物线的顶点,证明直线L过定点,求定点