证明(1+cscθ)(1-sinθ)=cotθcosθ
证明1-2cos^2θ/tanθ-cotθ=sinθcosθ
证明:tanθ-cotθ/secθ-cscθ=secθ+cscθ/tanθ+cotθ
证明tanθ×((1-sinθ)/(1+cosθ))=cotθ×((1-cosθ)/(1+sinθ))
化简【1+sinθ-cosθ/1+sinθ+cosθ】+cot(θ/2)
[(sinθ+tanθ)/(cscθ+cotθ)]^2=(sin^2θ+tan^2θ)/(csc^2θ+cot^2θ)
证明:(tan a-cot a)/(sec a+csc a)=sin a-cos a
求证[tanθ·(1-sinθ)]/1+cosθ=[cotθ·(1-cosθ)]/1+sinθ
已知cotθ=1/2,求sin²θ-2sinθcosθ+3cos²θ=?
sinθ-cosθ=1/2,则tanθ+cotθ=
若sinθ+cosθ=1/3,求tanθ+cotθ.
sinΘ-cosΘ=1/2,求tanΘ+cotΘ
sin cos tan cot sec csc 它们的1度等于?