已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)过点(2,0),且离心率为√3/2,1.求椭圆C的方程(X^
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 00:05:00
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)过点(2,0),且离心率为√3/2,1.求椭圆C的方程(X^2/4+Y^2/2 =1)
2.A1,A2为椭圆C的左,右顶点,直线L:X=2√2与X轴交于点D,点P是椭圆C上异于A1,A2的动点,直线A1P,A2P分别交直线L于E,F两点,证明│DE│*│DF│恒为定值1
2.A1,A2为椭圆C的左,右顶点,直线L:X=2√2与X轴交于点D,点P是椭圆C上异于A1,A2的动点,直线A1P,A2P分别交直线L于E,F两点,证明│DE│*│DF│恒为定值1
1、c/a=√3/2,得c=√3/2a,b^2=a^2-c^2=1/4a^2,
再把(2,0)代入椭圆C的方程,易求得a^2=4,b^2=1
所以方程为:X^2/4+Y^2 =1
2,证明:设P(X.,Y.),K(A1P)=Y./(X.+2),
所以A1P的方程为:Y=Y./(X.+2)*(X+2)
当X=2√2,Y=Y./(X.+2)*(2√2+2),即│DE│=Y./(X.+2)*(2√2+2),
同理A2P的方程为:Y=Y./(X.-2)*(2√2-2),│DF│=Y./(2-X.)*(2√2-2)(因为X.小于2),
所以│DE│*│DF│=4Y.^2/(4-X.^2),又P(X.,Y.)点在椭圆X^2/4+Y^2 =1上,
所以X.^2+4Y.^2=4,即4Y.^2=4-X.^2,所以│DE│*│DF│=1
再把(2,0)代入椭圆C的方程,易求得a^2=4,b^2=1
所以方程为:X^2/4+Y^2 =1
2,证明:设P(X.,Y.),K(A1P)=Y./(X.+2),
所以A1P的方程为:Y=Y./(X.+2)*(X+2)
当X=2√2,Y=Y./(X.+2)*(2√2+2),即│DE│=Y./(X.+2)*(2√2+2),
同理A2P的方程为:Y=Y./(X.-2)*(2√2-2),│DF│=Y./(2-X.)*(2√2-2)(因为X.小于2),
所以│DE│*│DF│=4Y.^2/(4-X.^2),又P(X.,Y.)点在椭圆X^2/4+Y^2 =1上,
所以X.^2+4Y.^2=4,即4Y.^2=4-X.^2,所以│DE│*│DF│=1
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为1/2,且经过点P(1,3/2).求椭圆C的方程.
已知椭圆C:x2/a2+y2/b2=1(a>0,b>0)过点(1,2/3),且离心率为1/2.求椭圆的方程
已知椭圆c:x^2/a^2+y^2/b^2=1(a>1,b>0) 过点0,1 且离心率为二分之根号3,求椭圆方
已知椭圆C:x^2+y^2/m=1的焦点在y轴上,且离心率为根号3/2,过点(0,3)的直线l与椭圆C交与两点A,B.
6题已知椭圆C:方程略(a>b>0)的左右焦点为F1,F2,离心率e=跟号2/2,且椭圆C过抛物线X平方=-4y的焦点1
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)经过点A(2,1),离心率为√2/2.(1)求椭圆方程;
椭圆C:x^2/a^2+y^2/b^2=1的离心率e=1/2,且过点P(1,3/2) (1)求椭圆C的方程 (2)若斜率
高二数学:椭圆c:x^2/a^2+y^2/b^2=1的离心率为2跟号5/5,且A(0,1)是椭圆的顶点 ①求椭圆方程 ②
设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为e=根号2/2,点A是椭圆上的一点,且点A到椭圆c的
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)过点(1,3/2),且长轴长等于4.(1)求椭圆C的方程;(
已知椭圆x^2/a^2+y^2/b^2=1过点M(0,2),离心率e=根号6/3 求椭圆方程
已知椭圆C;x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√2/2,以原点为圆心,椭圆