怎样证明圆与直线相切?
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 10:15:24
怎样证明圆与直线相切?
在直线与圆的各种位置关系中,相切是一种重要的位置关系.
现介绍以下三种判别直线与圆相切的基本方法:
(1)利用切线的定义——在已知条件中有“半径与一条直线交于半径的外端”,于是只需直接证明这条直线垂直于半径的外端.
例1 已知:△ABC内接于⊙O,⊙O的直径AE交BC于F点,点P在BC的延长线上,且∠CAP=∠ABC.
求证:PA是⊙O的切线.
证明:连接EC.
∵AE是⊙O的直径,
∴∠ACE=90°,
∴∠E+∠EAC=90°.
∵∠E=∠B,又∠B=∠CAP,
∴∠E=∠CAP,
∴∠EAC+∠CAP=∠EAC+∠E=90°,
∴∠EAP=90°,
∴PA⊥OA,且过A点,
则PA是⊙O的切线.
现介绍以下三种判别直线与圆相切的基本方法:
(1)利用切线的定义——在已知条件中有“半径与一条直线交于半径的外端”,于是只需直接证明这条直线垂直于半径的外端.
例1 已知:△ABC内接于⊙O,⊙O的直径AE交BC于F点,点P在BC的延长线上,且∠CAP=∠ABC.
求证:PA是⊙O的切线.
证明:连接EC.
∵AE是⊙O的直径,
∴∠ACE=90°,
∴∠E+∠EAC=90°.
∵∠E=∠B,又∠B=∠CAP,
∴∠E=∠CAP,
∴∠EAC+∠CAP=∠EAC+∠E=90°,
∴∠EAP=90°,
∴PA⊥OA,且过A点,
则PA是⊙O的切线.