证明:矩阵方程AX=B有解r(A)=r[A|B],其中A为m*n矩阵B为m*p矩阵
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 20:44:19
证明:矩阵方程AX=B有解r(A)=r[A|B],其中A为m*n矩阵B为m*p矩阵
如题
如题
若方程AX = B有解,则B的各列向量均可由A的列向量线性表出 (X的对应列为组合系数).
于是[A|B]的列向量均可由A的列向量线性表出,得r([A|B]) ≤ r(A).
又显然r(A) ≤ r([A|B]),故r(A) = r([A|B]).
反之,若r(A) = r([A|B]).
对B的任意一个列向量b,考虑线性方程组Ax = b.
由r(A) ≤ r([A|b]) ≤ r([A|B]) = r(A),有r(A) = r([A|b]),故Ax = b有解.
以这些解为列向量依次排成矩阵X,可验证AX = B.
于是[A|B]的列向量均可由A的列向量线性表出,得r([A|B]) ≤ r(A).
又显然r(A) ≤ r([A|B]),故r(A) = r([A|B]).
反之,若r(A) = r([A|B]).
对B的任意一个列向量b,考虑线性方程组Ax = b.
由r(A) ≤ r([A|b]) ≤ r([A|B]) = r(A),有r(A) = r([A|b]),故Ax = b有解.
以这些解为列向量依次排成矩阵X,可验证AX = B.
A为m*n矩阵 B为n*s矩阵 证明r(A)=
线性代数问题:已知矩阵A为m*n,如何证明r(AB)=r(BA)=r(A)?其中B矩阵位A的转置矩阵.
设A是m*n矩阵,B是m*s矩阵,证明矩阵方程A'AX=A'B一定有解(其中A'为A的转置矩阵)
A为n阶非奇异矩阵,B为n*m矩阵,证明r(AB)=r(A)
设m*n矩阵A,m阶可逆矩阵P及n阶可逆矩阵Q,矩阵B=PAQ,证明:r(A)=r(B)
设非齐次线性方程组Ax=b中,系数矩阵A为m*n矩阵,且R(A)=r
设A为m*n矩阵,B为k*n矩阵,且r(A)+r(B)
设A为m阶正定矩阵,B是m*n实矩阵,且R(B)=n,证明B'AB也是正定矩阵
设A是m*n矩阵,B为n×s矩阵,r(A)=r<n,且AB=0.证明:秩(B)≦n-r
设A为r*r阶矩阵,B为r*n阶矩阵且R(B)=r,证明:
设A使一m×n矩阵,B ,C 分别为m阶,n阶可逆矩阵,证明:r(BA)=r(A)=r(AC)
设A是m×n矩阵,R(A)=r,证明存在秩为r的m×n矩阵B与秩为r的r×n矩阵C,使A=BC