已知f(x)=2^x可以表示成一个奇函数g(x)与一个偶函数h(x)之和,若关于x的不等式ag(x)+h(2x)>=0对
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 03:39:07
已知f(x)=2^x可以表示成一个奇函数g(x)与一个偶函数h(x)之和,若关于x的不等式ag(x)+h(2x)>=0对于x属于【1,2】恒成立,则实数a的最小值是?
f(x)=g(x)+h(x)
f(-x)=g(-x)+h(-x)=-g(x)+h(x)
g(x)=[f(x)-f(-x)]/2=[2^x-2^(-x)]/2
h(x)=)=[f(x)+f(-x)]/2=[2^x+2^(-x)]/2
Z(x)=ag(x)+h(2x)=1/2[ a 2^x+4^x-a/2^x+1/4^x)]>=0
Z(1)=1/2[1.5a+4.25]>0,--> a>=-4.25/1.5=-17/6
z(2)=1/2[3.75a+16+1/16]>=0,a>=-257/60
所以有a>=-17/6
f(-x)=g(-x)+h(-x)=-g(x)+h(x)
g(x)=[f(x)-f(-x)]/2=[2^x-2^(-x)]/2
h(x)=)=[f(x)+f(-x)]/2=[2^x+2^(-x)]/2
Z(x)=ag(x)+h(2x)=1/2[ a 2^x+4^x-a/2^x+1/4^x)]>=0
Z(1)=1/2[1.5a+4.25]>0,--> a>=-4.25/1.5=-17/6
z(2)=1/2[3.75a+16+1/16]>=0,a>=-257/60
所以有a>=-17/6
已知f(x)=2ˆx(x属于R)可以表示为一个奇函数g(x)于一个偶函数h(x)之和
已知f(x)=2^(x+1)是定义在R上的函数,且f(x)可以表示为一个偶函数g(x)和奇函数h(x)之和
定义在R上的任意函数f(x)都可以表示成一个奇函数g(x)与一个偶函数h(x)之和,如果f(x)=lg(10的x次+1)
已知定义在R上的任意函数f(x)=lg(10x+1),x∈R,可以表示成一个奇函数g(x)与偶函数h(x)的和,求g(x
任意函数f(x)都可以表示成一个奇函数g(x)和一个偶函数h(x)之和,如果f(x)=lg(10^x+1),那么g(x)
证明:定义在R上的任意函数f(x)都可以表示成一个奇函数g(x)和一个偶函数h(x)之和.
已知函数y=1/(x+1)可表示成一个奇函数f(x)与一个偶函数g(x)之和则 f(x)=?
已知函数F(X)=x^4+ax^3+bx^2+cx+d可以分解成一个奇函数f(x)和一个偶函数g(x)之和,且对任意的x
定义在(-∞,+∞)上的任意函数f(x)都可表示成一个奇函数g(x)和一个偶函数h(x)之和.如果f(x)=lg(10x
已知函数h(x)=2的x次方h(x)=f(x)+g(x)其中f(x)为偶函数g(x)为奇函数 求g(x)和f(x)的解析
已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=2x,若不等式af(x)+g(2x)≥0对x∈(0
你能把函数f(x)=3x^3+2x^2-x+3表示成一个偶函数与一个奇函数之和的形式