一道关于椭圆的题目椭X^2/4+Y^2/3=1,AB分别是其左右顶点,P是X=4上的动点,若AP与椭圆的交点为A,M;B
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 01:52:55
一道关于椭圆的题目
椭X^2/4+Y^2/3=1,AB分别是其左右顶点,P是X=4上的动点,若AP与椭圆的交点为A,M;BP与椭圆的交点为B,N,求证:角MBN是钝角.
椭X^2/4+Y^2/3=1,AB分别是其左右顶点,P是X=4上的动点,若AP与椭圆的交点为A,M;BP与椭圆的交点为B,N,求证:角MBN是钝角.
设P(4,t) ,t≠0
所以 直线PA: y=(t/6)(x+2)
与椭圆方程联立,消y,得:(t^2+27)x^2+4t^2x+4t^2-108=0
因为直线PA与椭圆的交点A(-2,0)已知,而由韦达定理得:x1x2=(4t^2-108)/(t^2+27)
所以 x2=2(27-t^2)/(t^2+27)……………………x1是A点的横坐标,x2是M点的横坐标
将x2代入直线PA的方程,得到M(2(27-t^2)/(t^2+27),18t/(t^2+27))
证明 角MBN是钝角,需且仅需证明 MBP是锐角
向量BM=(-4t^2/(t^2+27),18t/(t^+27))
向量BP=(2,t)
BM·BP=10t^2/(t^2+27)>0
所以 MBP是锐角
得证
所以 直线PA: y=(t/6)(x+2)
与椭圆方程联立,消y,得:(t^2+27)x^2+4t^2x+4t^2-108=0
因为直线PA与椭圆的交点A(-2,0)已知,而由韦达定理得:x1x2=(4t^2-108)/(t^2+27)
所以 x2=2(27-t^2)/(t^2+27)……………………x1是A点的横坐标,x2是M点的横坐标
将x2代入直线PA的方程,得到M(2(27-t^2)/(t^2+27),18t/(t^2+27))
证明 角MBN是钝角,需且仅需证明 MBP是锐角
向量BM=(-4t^2/(t^2+27),18t/(t^+27))
向量BP=(2,t)
BM·BP=10t^2/(t^2+27)>0
所以 MBP是锐角
得证
已知椭圆C:x^2/4+y^2=1的上下顶点分别为A,B,点P在椭圆上,且易于点AB,直线直线AP,BP与直线l:y=-
椭圆E:x^2/4+y^2/3=1的左顶点为A,点B,C是椭圆E上的两个动点,若直线AB与AC斜率乘积为定值-1/4,则
已知椭圆C:x^2/4+y^2/3=1的左右两个顶点分别为AB,点M是直线l:x=4上一点,直线MA,MB分别与椭圆交于
设A、B是椭圆x²/25+y²/16=1与x轴的左、右两个交点,P是椭圆上的一个动点,试求AP中点M
AB为椭圆X*2比a*2+Y*2比b*2=1左右顶点(1,3\2)为椭圆上一点椭圆的长半轴=焦距P(4,X)APBP与椭
一道高二椭圆题设A是椭圆 x^2/a^2+y^2/b^2=1(a.>b>0)长轴上的一个顶点,若椭圆上存在点P,使AP⊥
椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率是√3/2,设点P为椭圆上的动点,点A(0,3/2),若AP
椭圆x^2/a^2+y^2/b^2=1(a>b>0)的右焦点F,其右准线与X轴的交点为A,在椭圆上存在点P满足AP的垂直
椭圆x^2/a^2+y^2/b^2=1的右焦点F,其右准线与x轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点
1.已知椭圆x^2/2+y^2=1的左右焦点分别为F1,F2,椭圆的下顶点为A,点P是椭圆上任意一点,圆M是以PF2为直
已知椭圆x*2/a*2+y*2/b*2=1(a>b>0),它的上下顶点分别是A,B,点M是椭圆上的动点,(不与A,B重合
椭圆x^2/a^2+y^2/b^2=1 a>b>o 右焦点为F 其右准线与x轴的交点为A 在椭圆上存在一点P满足线段AP