1、求常数k的值,使得平面y=kz与椭球面2x^2+y^2+4z^2=1的交线为圆.
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 05:19:59
1、求常数k的值,使得平面y=kz与椭球面2x^2+y^2+4z^2=1的交线为圆.
2、求平面2x-12y-z-16=0与双曲抛物面x^2-4y^2=2z的交线是两条相交直线.
2、求平面2x-12y-z-16=0与双曲抛物面x^2-4y^2=2z的交线是两条相交直线.
1)若k=0,则不成立,∴k≠0
将z=y/k代入椭球面方程:2x^2 + y^2[1 + (4/k^2)] = 1,∵交线为圆∴系数相等
∴2 = 1 + (4/k^2),∴k = 2或-2
2)由2x-12y-z+16=0得2z = 4x-24y+32代入第二个方程得:
x^2-4y^2 = 4x-24y+32,∴(x-2)^2 = 4(y-3)^2 = (2y-6)^2
∴x-2y+4=0 或 x+2y-8=0
即平面与双曲抛物面的交线是2条相交直线
将z=y/k代入椭球面方程:2x^2 + y^2[1 + (4/k^2)] = 1,∵交线为圆∴系数相等
∴2 = 1 + (4/k^2),∴k = 2或-2
2)由2x-12y-z+16=0得2z = 4x-24y+32代入第二个方程得:
x^2-4y^2 = 4x-24y+32,∴(x-2)^2 = 4(y-3)^2 = (2y-6)^2
∴x-2y+4=0 或 x+2y-8=0
即平面与双曲抛物面的交线是2条相交直线
求椭球面x^2/a^2+y^2/b^2+z^2/c^2=1在第一卦限内的点,使得椭球面过该点的切平面与三个坐标面围成的四
求平面x=2与椭球面x^2/16+y^2/12+z^2/4=1相交所得椭圆的半轴与顶点
求椭球面 x^2+2y^2+z^2=1 上平行于平面 x-y+2z=0 的切平面方程
求椭球面x²+2y+z²=1上平行于平面x-y+2z=0的切平面方程,
求椭球面2x^2+4y^2+z^2=4到平面2x+2y+z+5=0的最短距离
求椭球面x^2+2y^2+x^2上平行于平面x-y+2z=0的切平面方程
求椭球面x^2+2y^2+3z^2=21上某点处的切平面的方程,该切平面过已知直线:(x-6)/2=y-3=(2z-1)
高数 多元函数微分学 "求椭球面x^2 + 2y^2 + z^2 = 1上平行于平面x - y + 2z = 0的切平面
旋转椭球面x^2+y^2+4z^2=9被平面x+2y+5z=0截得椭圆,求该椭圆的长半轴与短半轴
求通过平面4x-y+3z-1=0与x+5y-z+2=0的交线且与平面2x-y+5z+1=0垂直的平面方程.
平面交线经过两平面4x-y+3z-1=0和x+5y-z+2=0的交线做平面,并使之与y轴平行,平面的方程为~谢谢~步骤越
求旋转椭球面3x^2+y^2+z^2=16上点(-1,-2,3)处的切平面方程和法线方程.求详细过程~~