作业帮 > 数学 > 作业

数论:y=am+bn,m,n均为自然数.1.若a=3,b=5,是否有y取不到的自然数?有多少个y取不到的自然数?

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/07/03 12:41:28
数论:y=am+bn,m,n均为自然数.1.若a=3,b=5,是否有y取不到的自然数?有多少个y取不到的自然数?
2.怎样设置a和b的值,使得y取不到的数是有限的?
3.现在,已知a,b均不等于2,而且y取不到的数恰好有65个.a,b分别是多少?
首先有裴蜀定理,对整数a,b,c,方程ax+by = c有整数解当且仅当(a,b) | c.
因此若a,b不互质,am+bn能取到的自然数只有(a,b)的倍数,有无穷多个自然数不能取到.
于是只要考虑a,b互质的情况.
当为a,b互质的正整数,设(x,y) = (m,n)为ax+by = c的一组整数解.
容易证明ax+by = c的全体整数解为(x,y) = (m+bk,n-ak),其中k为整数.
这些整数解中存在唯一的一个,使0 ≤ x < b.
当c ≥ ab,满足0 ≤ x < b的解必同时满足y > 0,此时x,y都是自然数.
因此当c ≥ ab,ax+by = c必有自然数解.
于是a,b互质时,am+bn不能取到的自然数只有有限个.
因此第2问的答案就是:取不到的数只有有限个,当且仅当a,b互质.
下面具体计算a,b为互质的正整数时,有多少个自然数不能取到.
只需考虑0 ≤ c < ab.
设ax+by = c有一组自然数解(x,y) = (m,n),则有0 ≤ m < b,0 ≤ n < a.
若k ≥ 1,则n-ak < 0,若k ≤ -1,则m+kb < 0.
因此ax+by = c至多有一组自然数解.
[0,ab)中有自然数解的c的个数就等于满足0 ≤ ax+by < ab的自然数对(x,y)的个数.
在坐标平面上考虑直线ax+by = ab与x轴,y轴围成的直角三角形.
满足0 ≤ ax+by ≤ ab的自然数对(x,y)的个数就等于该直角三角形内部和边界上的整点数目N.
其中满足ax+by = ab的有两个点(b,0)与(0,a),其余点都满足0 ≤ ax+by < ab,个数为N-2.
再考虑由直线ax+by = ab与x = b,y = a围成的直角三角形.
由对称性,其内部和边界上整点数目也为N(包括(b,0)与(0,a)).
两个直角三角形一起构成矩形[0,b]×[a,0],其中有整点(b+1)(a+1)个.
因此2N-2 = (b+1)(a+1),N = (ab+a+b+3)/2.
满足0 ≤ ax+by < ab的自然数对的个数为N-2 = (ab+a+b-1)/2.
即0至ab-1这ab个数中,am+bn能取到的有(ab+a+b-1)/2个.
因此不能取到的有ab-(ab+a+b-1)/2 = (a-1)(b-1)/2个.
至此我们得到:对互质的正整数a,b,不能表示为am+bn的自然数有(a-1)(b-1)/2个.
第1问,若a = 3,b = 5,有(a-1)(b-1)/2 = 4个自然数不能取到.
第3问,若恰好有65个自然数不能取到,有(a-1)(b-1)/2 = 65,即(a-1)(b-1) = 130.
满足2 < a < b的正整数解有a = 3,b = 66; a = 6,b = 27; a = 11,b = 14.
其中只有a = 11,b = 14是互质的,是满足条件的唯一解.
去掉a < b的限制后,还有a = 14,b = 11这一组.
再问: 你简直就是神仙啊!!如果可以,能帮我做做 http://zhidao.baidu.com/question/523802868?quesup2&oldq=1 吗?我已经做出第一问了,也猜出第二问了,但无法证明。。。谢谢!
再答: 已经回答了, 只是之前回答失效了. 费了一番功夫才找回来.