已知,抛物线y=ax2+bx+c(a不等于0)与x轴交于A,B两点,抛物线顶点为D(1,-4),且B(3,0)
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 11:48:16
已知,抛物线y=ax2+bx+c(a不等于0)与x轴交于A,B两点,抛物线顶点为D(1,-4),且B(3,0)
1,求抛物线表达式
2,点E为Y轴上一点,且tan角BAE=1/2,求满足条件的E点坐标
3,设过A点和2中的E点的直线为L,在L上是否存在一点P,使得三角形ABP喂直角三角形,若存在,求出满足条件的P点坐标,若不存在,说明理由
1,求抛物线表达式
2,点E为Y轴上一点,且tan角BAE=1/2,求满足条件的E点坐标
3,设过A点和2中的E点的直线为L,在L上是否存在一点P,使得三角形ABP喂直角三角形,若存在,求出满足条件的P点坐标,若不存在,说明理由
答:
(1)抛物线y=ax2+bx+c的顶点D(1,-4):
对称轴x=-b/2a=1……(1)
c-b^2/4a=-4……(2)
点B(3,0)代入抛物线方程得:9a+3b+c=0……(3)
由(1)至(3)式解得:a=1,b=-2,c=-3
所以抛物线方程为:y=x^2-2x-3
(2)点A为(-1,0),设点E为(0,e),依题意知道:
tan∠BAE=OE/OA=1/2
即:|e|/|-1|=1/2
所以e=±1/2,点E为(0,1/2)或者(0,-1/2)
(3)AE直线之一为:y-0=(tan∠BAE)*[x-(-1)]=(x+1)/2,即y=x/2+1/2
令点P为(p,p/2+1/2),依题意知道:AP⊥BP或者AB⊥BP
(3.1)当AP⊥BP时:BP的斜率为(p+1)/(2p-6),AP的斜率为1/2,
所以:(1/2)*(p+1)/(2p-6)=-1,解得p=11/5,点P为(11/5,8/5)
(3.2)当AB⊥BP时:BP平行于y轴,p=3,点P为(3,2).
同理,根据对称性可求得另外两点(11/5,-8/5)及(3,-2)
综上所述,所求点P为:(11/5,8/5)或者 (11/5,-8/5)或者(3,2)或者(3,-2)
(1)抛物线y=ax2+bx+c的顶点D(1,-4):
对称轴x=-b/2a=1……(1)
c-b^2/4a=-4……(2)
点B(3,0)代入抛物线方程得:9a+3b+c=0……(3)
由(1)至(3)式解得:a=1,b=-2,c=-3
所以抛物线方程为:y=x^2-2x-3
(2)点A为(-1,0),设点E为(0,e),依题意知道:
tan∠BAE=OE/OA=1/2
即:|e|/|-1|=1/2
所以e=±1/2,点E为(0,1/2)或者(0,-1/2)
(3)AE直线之一为:y-0=(tan∠BAE)*[x-(-1)]=(x+1)/2,即y=x/2+1/2
令点P为(p,p/2+1/2),依题意知道:AP⊥BP或者AB⊥BP
(3.1)当AP⊥BP时:BP的斜率为(p+1)/(2p-6),AP的斜率为1/2,
所以:(1/2)*(p+1)/(2p-6)=-1,解得p=11/5,点P为(11/5,8/5)
(3.2)当AB⊥BP时:BP平行于y轴,p=3,点P为(3,2).
同理,根据对称性可求得另外两点(11/5,-8/5)及(3,-2)
综上所述,所求点P为:(11/5,8/5)或者 (11/5,-8/5)或者(3,2)或者(3,-2)
已知抛物线Y=ax2+bx+c的顶点C(1,—2),与X轴交于A,B两点,且△ ABC为直角三角形.
如图,抛物线y=ax2+bx+c与x轴交于A,D两点,与y轴交于点C,抛物线的顶点B在第一象限,若点A的坐标为(1,0)
已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点为C.求...
已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点为C.
设a,b,c为实数,且a≠0,抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C,且抛物线的顶点在直线y=-
已知抛物线y=ax2+bx+c的顶点为P(-4,-),与x轴交于A、B两点,与y轴交于点C,其中B点坐标为(1,0).
已知抛物线y=ax^2+bx+c(a不等于0),顶点为c,与x轴交于a,b两点,其中c(1,-4),
如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两
如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A,B两点,交y轴于点D,其中点B的坐标3.0
抛物线y=ax2+bx+c的顶点为P,对称轴直线x=1于x轴交于点D,抛物线与x轴交于点D抛物线交于A.B两点A(-1,
已知抛物线y=ax2+bx+c的对称轴为直线x=2,且与x轴交于A、B两点,与y轴交于点C,其中A(1,0),C(0,-
如图,顶点坐标为(2,-1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.