在△ABC中,已知三点A(cosα,sinα),B(cosβ,sinβ),C(cosγ,sinγ),O为原点.若向量OA
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 04:32:14
在△ABC中,已知三点A(cosα,sinα),B(cosβ,sinβ),C(cosγ,sinγ),O为原点.若向量OA+kOB+(2-k)OC=0(k为
在△ABC中,已知三点A(cosα,sinα),B(cosβ,sinβ),C(cosγ,sinγ),O为原点。若向量OA+kOB+(2-k)OC=0(k为常数,且0<k<2)当cos(β-γ)取最大值时,S△BOC:S△AOC:S△AOB(已经求出k=1时,cos(β-γ)最大值为-1/2)
在△ABC中,已知三点A(cosα,sinα),B(cosβ,sinβ),C(cosγ,sinγ),O为原点。若向量OA+kOB+(2-k)OC=0(k为常数,且0<k<2)当cos(β-γ)取最大值时,S△BOC:S△AOC:S△AOB(已经求出k=1时,cos(β-γ)最大值为-1/2)
(1)由OA→+KOB→+(2-K)OC→=0→得kOB→+(2-k)OC→=-OA→
两边平方,得k2+(2-k)2+2k(2-k)cos(β-γ)=1
整理得cos(β-γ)=2k2-4k+32k2-4k=1+32(k2-2k)
当k∈(0,2)时,k2-2k∈[-1,0),32(k2-2k)∈(-∞,-32],1+32(k2-2k)∈(-∞,-12]
又cos(β-γ)∈[-1,1],
∴cos(β-γ)∈[-1,-12]
当k=1时,cos(β-γ)取得最大值-12;
当k=12或k=32时,cos(β-γ)取得最小值-1.
(2)由(1)得,cos(β-γ)取得最大值-12时,k=1
此时,OA→+OB→+OC→=0→且OB→与OC→的夹角为120°.
又|OA→|=|OB→|=|OC→|,(OA→+OB→)2=OA→2+OB→2+2OA→•OB→=1⇒OA→•OB→=-12
∴OA→与OB→的夹角为120°.
故S△BOC:S△AOC:S△AOB=1:1:1.
两边平方,得k2+(2-k)2+2k(2-k)cos(β-γ)=1
整理得cos(β-γ)=2k2-4k+32k2-4k=1+32(k2-2k)
当k∈(0,2)时,k2-2k∈[-1,0),32(k2-2k)∈(-∞,-32],1+32(k2-2k)∈(-∞,-12]
又cos(β-γ)∈[-1,1],
∴cos(β-γ)∈[-1,-12]
当k=1时,cos(β-γ)取得最大值-12;
当k=12或k=32时,cos(β-γ)取得最小值-1.
(2)由(1)得,cos(β-γ)取得最大值-12时,k=1
此时,OA→+OB→+OC→=0→且OB→与OC→的夹角为120°.
又|OA→|=|OB→|=|OC→|,(OA→+OB→)2=OA→2+OB→2+2OA→•OB→=1⇒OA→•OB→=-12
∴OA→与OB→的夹角为120°.
故S△BOC:S△AOC:S△AOB=1:1:1.
已知向量OA=(cosα,sinα),OB=(cosβ,sinβ),OC=(cosγ,sinγ),且O为△ABC的重心,
已知三点A(cos a,sin a),B(cos b,sin b),C(cosc ,sinc ),若向量 OA +k O
已知向量OA=(λcosα,λsinα)(λ≠0)向量OB=(-sinβ,cosβ)其中O为坐标原点.
已知向量OA=(λsinα,λcosα),OB=(cosβ,sinβ),且α+β=5π/6,其中O为原点,
已知向量OA=(λcosα,λsinα)(λ≠0),OB=(-sinβ,cosβ),其中O为坐标原点.
已知向量OA=a=(cosα,sinα),向量OB=b=(2cosβ,2sinβ),向量OC=c=(0,2),其中O为坐
A(1,0)B(0,1)C(cosα,sinα)D(cosβ,cosβ)是单位圆上的四个点,O为原点
已知α,β为锐角,向量a=(cosα,sinα),向量b=(cosβ,sinβ)
已知向量OA=(2cosα,2sinα),向量OB=(-sinβ,cosβ),其中O为坐标原点,若β=α-π/6,则|向
三角恒等变换:已知A(1,0)B(0,1)C(cosα,sinα)D(cosβ,cosβ)是单位圆上的四个点,O为原点
已知向量OA=(λcosα,λsinα)(λ≠0)向量OB=(-sinβ,cosβ)其中O为坐标原点拜托了各位 谢谢
已知向量a=(cosα,sinα),b=(cosβ,sinβ),向量a-b等于