已知anbn都是等差数列,其中n项和分别为sntn,若sn/tn=n/2n+1
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 00:32:41
已知anbn都是等差数列,其中n项和分别为sntn,若sn/tn=n/2n+1
求a5/b5.
求sn/bn
求a5/b5.
求sn/bn
a5/b5=[(a1+a9)/2]/[(b1+b9)/2] /分子分母同时运用等差中项性质
=[(a1+a9)×9/2]/[(b1+b9)×9/2]
=S9/T9
=9/(2×9+1)
=9/19
第二问是an/bn吧.
an/bn=[(a1+a(2n-1))/2]/[(b1+b(2n-1))/2]
=[(a1+a(2n-1))(2n-1)/2]/[(b1+b(2n-1))(2n-1)/2]
=S(2n-1)/T(2n-1)
=(2n-1)/[2(2n-1)+1]
=(2n-1)/(4n-1)
如果是Sn/bn,那么:
Sn/Tn=[na1+n(n-1)d1/2]/[nb1+n(n-1)d2/2]
=[2a1+(n-1)d1]/[2b1+(n-1)d2]
=[d1n+(2a1-d1)]/[d2n+(2b1-d2)]
=n/(2n+1)
令d1=t (t≠0),则2a1-d1=0 d2=2t 2b1-d2=t
解得a1=t/2 b1=3t/2 d1=t d2=2t
Sn/bn=[na1+n(n-1)d1/2]/[b1+(n-1)d2]
=[n(t/2)+n(n-1)(t/2)]/[(3t/2)+(n-1)(2t)]
=[n+n(n-1)]/[3 +4(n-1)]
=n²/(4n-1)
=[(a1+a9)×9/2]/[(b1+b9)×9/2]
=S9/T9
=9/(2×9+1)
=9/19
第二问是an/bn吧.
an/bn=[(a1+a(2n-1))/2]/[(b1+b(2n-1))/2]
=[(a1+a(2n-1))(2n-1)/2]/[(b1+b(2n-1))(2n-1)/2]
=S(2n-1)/T(2n-1)
=(2n-1)/[2(2n-1)+1]
=(2n-1)/(4n-1)
如果是Sn/bn,那么:
Sn/Tn=[na1+n(n-1)d1/2]/[nb1+n(n-1)d2/2]
=[2a1+(n-1)d1]/[2b1+(n-1)d2]
=[d1n+(2a1-d1)]/[d2n+(2b1-d2)]
=n/(2n+1)
令d1=t (t≠0),则2a1-d1=0 d2=2t 2b1-d2=t
解得a1=t/2 b1=3t/2 d1=t d2=2t
Sn/bn=[na1+n(n-1)d1/2]/[b1+(n-1)d2]
=[n(t/2)+n(n-1)(t/2)]/[(3t/2)+(n-1)(2t)]
=[n+n(n-1)]/[3 +4(n-1)]
=n²/(4n-1)
等差数列{an},{bn}的前n项和分别为Sn,Tn,若SnTn=2n3n+1,则anbn=( )
已知等差数列anbn的前n项和分别为sn tn若sn/tn=7n+1/4n+27
等差数列{an}、{bn}的前n项和分别为Sn、Tn,且SnTn=7n+45n−3,则使得anbn为整数的正整数的n的个
若两个等差数列{an}和{bn}的前n项和分别是Sn和Tn,已知SnTn=n2n+1,则a7b7等于( )
由正数组成的等差数列{an}和{bn}的前n项和分别为Sn和Tn,且SnTn=2n3n+1,则a5b7=( )
设等差数列{an},{bn}的前n项和分别为Sn,Tn若对任意自然数n都有SnTn=2n-34n-3,则a9b5+b7+
有关等差数列的数学题已知等差数列{an},{bn}的前n项和分别为Sn,Tn,且Sn/Tn=(3n+2)/(2n+1),
已知数列{an},{bn}都是等差数列,其前n项和为Sn,Tn,且Sn/Tn=(n+1)/(2n-3)
已知等差数列{an}、{bn}的前n项和分别为Sn、Tn,若Sn/Tn=【7n+1】/【4n+27】,则an/bn=
已知数列{an}的前n项和Sn=2^n-1,若bn=n.求数列{anbn}的前n项和Tn
已知两个等差数列{an},{bn}的前n项和分别是Sn,Tn,若 Sn/Tn =(2n)/(3n+1),则 an/bn=
两等差数列{an}、{bn}的前n项和分别为Sn、Tn,且SnTn=5n+32n+7,则a5b5的值是( )