作业帮 > 数学 > 作业

高中数列难题A1=3/2,An=3nA(n-1)/[2A(n-1)+(n-1)]∴n/An=2/3+(n-1)/3A(n

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 06:45:00
高中数列难题

A1=3/2,An=3nA(n-1)/[2A(n-1)+(n-1)]
∴n/An=2/3+(n-1)/3A(n-1),设Bn=n/An,则Bn=(2/3)+B(n-1)/3,
Bn-1=[B(n-1)-1]/3,∴数列{Bn-1}是首项B1-1=1/A1-1=-1/3,公比q=1/3的等比数列,通项Bn-1=(-1/3)·(1/3)^(n-1),Bn=1-(1/3)^n
∴An=n/Bn,A1A2A3…An=(1·2·3·…·n)/(B1B2B3…Bn)=n!/(B1B2B3…Bn)
∵B1B2B3…Bn=[1-(1/3)][1-(1/3)^2][1-(1/3)^3]·…·[1-(1/3)^n]>1/2
∴n!/(B1B2B3…Bn)<2n!,∴A1A2A3…An<2n!
为什么B1B2B3…Bn=[1-(1/3)][1-(1/3)^2][1-(1/3)^3]·…·[1-(1/3)^n]>1/2
用到如下结论:
如果 0= (1-(x1+x2+...+x(N-1))(1-xN)
= 1 -(x1+...+xN)+(x1+...+x(N-1))xN
>= 1-(x1+x2+...+xN)
回到原题:
[1-(1/3)][1-(1/3)^2][1-(1/3)^3]·…·[1-(1/3)^n]
>= 1 - ( 1/3+ 1/3^2+...+ 1/3^n)
> 1 - 1/3 * 1/(1-1/3)=1/2