求所有这样的正整数的个数,它在n进制中表示的数字各不相同,并且除去最左边的数字外每个数字均和他左边某
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 22:37:34
求所有这样的正整数的个数,它在n进制中表示的数字各不相同,并且除去最左边的数字外每个数字均和他左边某
(接上)个数相差+1或-1
(接上)个数相差+1或-1
不妨把问题用数列来叙述,即求满足如下条件的数列的个数.
① 数列各项为0~n-1的整数,且各不相同.
② 除首项外,每一项均与前面某项相差±1.
③ 数列的首项不为0.
过程分三步.
首先,设满足①,②且长度为n的数列的个数为a[n].
对于长为n的数列,考虑其前n-1项,可不重不漏的分为两种情况.
(1) 各项为0~n-2的整数,且各不相同.
(2) 各项为1~n-1的整数,且各不相同.
由a[n]的定义,满足(1),②且长度为n-1的数列的个数为a[n-1].
而满足(2),②且长度为n-1的数列的个数也为a[n-1].
易见,这些长为n-1的数列可以唯一的延长为一个满足①,②的长度为n的数列.
不同的数列延长后仍不同,且所有满足①,②的长度为n的数列都能这样延长得到.
于是a[n] = 2a[n-1].由a[2] = 2 (包括01和10),可得a[n] = 2^(n-1).
其次,考虑满足①,②的长度不限的数列的个数.
其中长度为k的数列可以分为n-k+1类.分别由0~k-1,k,k+1,...,n-k~n-1的整数组成.
每类有a[k] = 2^(k-1)个数列,总共有(n-k+1)·2^(k-1)个.
总数为2^(n-1)+2·2^(n-2)+3·2^(n-3)+...+n·2^0 = (2^n-1)+(2^(n-1)-1)+...+(2^1-1) = 2^(n+1)-n-2.
最后,在上述数列中,首项为0的有n个:0,01,012,...,012...(n-1).
于是满足①,②,③的数列共有2^(n+1)-2n-2个.
即满足条件的n进制整数有2^(n+1)-2n-2个.
① 数列各项为0~n-1的整数,且各不相同.
② 除首项外,每一项均与前面某项相差±1.
③ 数列的首项不为0.
过程分三步.
首先,设满足①,②且长度为n的数列的个数为a[n].
对于长为n的数列,考虑其前n-1项,可不重不漏的分为两种情况.
(1) 各项为0~n-2的整数,且各不相同.
(2) 各项为1~n-1的整数,且各不相同.
由a[n]的定义,满足(1),②且长度为n-1的数列的个数为a[n-1].
而满足(2),②且长度为n-1的数列的个数也为a[n-1].
易见,这些长为n-1的数列可以唯一的延长为一个满足①,②的长度为n的数列.
不同的数列延长后仍不同,且所有满足①,②的长度为n的数列都能这样延长得到.
于是a[n] = 2a[n-1].由a[2] = 2 (包括01和10),可得a[n] = 2^(n-1).
其次,考虑满足①,②的长度不限的数列的个数.
其中长度为k的数列可以分为n-k+1类.分别由0~k-1,k,k+1,...,n-k~n-1的整数组成.
每类有a[k] = 2^(k-1)个数列,总共有(n-k+1)·2^(k-1)个.
总数为2^(n-1)+2·2^(n-2)+3·2^(n-3)+...+n·2^0 = (2^n-1)+(2^(n-1)-1)+...+(2^1-1) = 2^(n+1)-n-2.
最后,在上述数列中,首项为0的有n个:0,01,012,...,012...(n-1).
于是满足①,②,③的数列共有2^(n+1)-2n-2个.
即满足条件的n进制整数有2^(n+1)-2n-2个.
若一个至少有两位数字的正整数除了最左边的数字外,其余各个数字都小于其左边的数字时,则称这样的正整数为“好数”.那么,所有
渐减数是指每个数字比其左边数字小的正整数,把所有的四位渐减数按从小到大的顺序排,第180个数为
求N!左边第二位的数字 pascal
有2345678组成没有重复数字的五位数,且排在左边的每个数字比它右边的数字大,这样的五位数有几个?
输入正整数1~n中所有能被3和7整除的数字,数字的和,数字的个数.
一个六位数的各位数字均不相同,最左边一位的数字是8,且它能被11整除,这样的六位数中最小的是多少
一个六位数的各位数字都不相同,最左边的数字是3,且这个数能被11整除,这样的六位数中最小的是多少?
左边的数字表示的是什么了
求N!左边第二位的数字pascal!不要C++!
“渐升数”(如34678)是指每个数字比其左边的数字大的正整数,已知共有126个五位渐升数,
编程:1:输入正整数1~n中所有能被3和7整除的数字,数字的和,数字的个数.
四阶幻方1-16的数字,每个数字放在4*4的方格子里,横竖斜的相加都相等,并且把最左边的移到最右边,横竖斜的相加还是相等