如图,在△ABC中,点D在AC上,DA=DB,∠C=∠DBC,以AB为直径的⊙O交AC于点E,F是⊙O上的点,且AF=B
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 10:35:58
如图,在△ABC中,点D在AC上,DA=DB,∠C=∠DBC,以AB为直径的⊙O交AC于点E,F是⊙O上的点,且AF=BF.
(1)求证:BC是⊙O的切线;
(2)若sinC=
(1)求证:BC是⊙O的切线;
(2)若sinC=
3 |
5 |
(1)证明:∵DA=DB(已知),
∴∠DAB=∠DBA(等边对等角);
又∵∠C=∠DBC(已知),
∴∠DBA﹢∠DBC=
1
2(∠DAB+∠DBA+∠C+∠DBC)=
1
2×180°=90°(三角形内角和定理),即∠ABC=90°,
∴AB⊥BC,
又∵点B在⊙O上,
∴BC是⊙O的切线;
(2)如图,连接BE,BF.
∵AB是⊙O的直径(已知),
∴∠AEB=90°(直径所对的圆周角是直角),
∴∠EBC+∠C=90°(直角三角形的两个锐角互余),
∵∠ABC=90°(由(1)知),
∴∠ABE+∠EBC=90°,
∴∠C=∠ABE(等量代换);
又∵∠AFE=∠ABE(同弧所对的圆周角相等),
∴∠AFE=∠C(等量代换),
∴sin∠AFE=sin∠ABE=sinC,
∴sin∠AFE=
3
5,
∴∠AFB=90°,
在Rt△ABE中,AB=
AE
sin∠ABE=5
2
∵AF=BF(已知),
∴AF=BF=5.
∴∠DAB=∠DBA(等边对等角);
又∵∠C=∠DBC(已知),
∴∠DBA﹢∠DBC=
1
2(∠DAB+∠DBA+∠C+∠DBC)=
1
2×180°=90°(三角形内角和定理),即∠ABC=90°,
∴AB⊥BC,
又∵点B在⊙O上,
∴BC是⊙O的切线;
(2)如图,连接BE,BF.
∵AB是⊙O的直径(已知),
∴∠AEB=90°(直径所对的圆周角是直角),
∴∠EBC+∠C=90°(直角三角形的两个锐角互余),
∵∠ABC=90°(由(1)知),
∴∠ABE+∠EBC=90°,
∴∠C=∠ABE(等量代换);
又∵∠AFE=∠ABE(同弧所对的圆周角相等),
∴∠AFE=∠C(等量代换),
∴sin∠AFE=sin∠ABE=sinC,
∴sin∠AFE=
3
5,
∴∠AFB=90°,
在Rt△ABE中,AB=
AE
sin∠ABE=5
2
∵AF=BF(已知),
∴AF=BF=5.
如图,在Rt△ABC中,∠C=90°,点D是AB上一点,以AD为直径作⊙O交AC于E,与BC相切于点F,连接AF。(1)
如图,已知在△ABC中,∠C=90°,AE平分∠BAC交BC于点E,点D在AB上,以AD为直径的⊙O经过点E,且交AC于
如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E点F在AC的延长线上,且∠CBF=1/2∠C
如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作FE⊥AB于点E,交AC的延长线于点F.
如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点F
如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交A
如图,在Rt△ABC中,∠ABC=90,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,且AD
已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠
已知,如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心.OA长为半径的圆与AC,AB分别交于点D,E,且∠
如图,在三角形ABC,AB=AC,以AB为直径的⊙O,分别交AC,BC于点D,E,点F在AC的延长线上,且∠CBF=2/
如图,在△ABC中,以AB为直径的⊙O分别交AC,BC于点D,E,点F在AC延长线上,且AC=CF,角CBF=角CFB
如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC,BC相切于点D,E.