如图,等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 14:33:14
如图,等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP; ④S△ABC=S四边形AOCP,其中正确的有( )
A. ②③
B. ①②④
C. ③④
D. ①②③④
A. ②③
B. ①②④
C. ③④
D. ①②③④
如图,
①连接OB,
∵AB=AC,BD=CD,
∴AD是BC垂直平分线,
∴OB=OC=OP,
∴∠APO=∠ABO,∠DBO=∠DCO,
∵∠ABO+∠DBO=30°,
∴∠APO+∠DCO=30°.故①正确;
②∵△OBP中,∠BOP=180°-∠OPB-∠OBP,
△BOC中,∠BOC=180°-∠OBC-∠OCB,
∴∠POC=360°-∠BOP-∠BOC=∠OPB+∠OBP+∠OBC+∠OCB,
∵∠OPB=∠OBP,∠OBC=∠OCB,
∴∠POC=2∠ABD=60°,
∵PO=OC,
∴△OPC是等边三角形,故②正确;
③在AB上找到Q点使得AQ=OA,则△AOQ为等边三角形,
则∠BQO=∠PAO=120°,
在△BQO和△PAO中,
∠BQO=∠PAO
∠ABO=∠APO
OB=OP,
∴△BQO≌△PAO(AAS),
∴PA=BQ,
∵AB=BQ+AQ,
∴AC=AO+AP,故③正确;
④作CH⊥CD,
∵∠HCB=60°,∠PCO=60°,
∴∠PCH=∠OCD,
在△CDO和△CHP中,
∠ODC=∠PHC=90°
∠OCD=∠PCH
OC=CP(等边三角形边长相等),
∴△CDO≌△CHP(AAS),
∴S△OCD=S△CHP
∴CH=CD,
∵CD=BD,
∴BD=CH,
在RT△ABD和RT△ACH中,
AB=AC
BD=CH,
∴RT△ABD≌RT△ACH(HL),
∴S△ABD=S△AHC,
∵四边形OAPC面积=S△OAC+S△AHC+S△CHP,S△ABC=S△AOC+S△ABD+S△OCD
∴四边形OAPC面积=S△ABC.故④正确.
故选 D.
①连接OB,
∵AB=AC,BD=CD,
∴AD是BC垂直平分线,
∴OB=OC=OP,
∴∠APO=∠ABO,∠DBO=∠DCO,
∵∠ABO+∠DBO=30°,
∴∠APO+∠DCO=30°.故①正确;
②∵△OBP中,∠BOP=180°-∠OPB-∠OBP,
△BOC中,∠BOC=180°-∠OBC-∠OCB,
∴∠POC=360°-∠BOP-∠BOC=∠OPB+∠OBP+∠OBC+∠OCB,
∵∠OPB=∠OBP,∠OBC=∠OCB,
∴∠POC=2∠ABD=60°,
∵PO=OC,
∴△OPC是等边三角形,故②正确;
③在AB上找到Q点使得AQ=OA,则△AOQ为等边三角形,
则∠BQO=∠PAO=120°,
在△BQO和△PAO中,
∠BQO=∠PAO
∠ABO=∠APO
OB=OP,
∴△BQO≌△PAO(AAS),
∴PA=BQ,
∵AB=BQ+AQ,
∴AC=AO+AP,故③正确;
④作CH⊥CD,
∵∠HCB=60°,∠PCO=60°,
∴∠PCH=∠OCD,
在△CDO和△CHP中,
∠ODC=∠PHC=90°
∠OCD=∠PCH
OC=CP(等边三角形边长相等),
∴△CDO≌△CHP(AAS),
∴S△OCD=S△CHP
∴CH=CD,
∵CD=BD,
∴BD=CH,
在RT△ABD和RT△ACH中,
AB=AC
BD=CH,
∴RT△ABD≌RT△ACH(HL),
∴S△ABD=S△AHC,
∵四边形OAPC面积=S△OAC+S△AHC+S△CHP,S△ABC=S△AOC+S△ABD+S△OCD
∴四边形OAPC面积=S△ABC.故④正确.
故选 D.
如图,等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC,点D是BA延长线上一点,点O是线段AD上一点,OP=OC
已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点
如图,在等腰△ABC中,AB=AC,AD⊥BC于点D,CF‖AB,P是AD上一点,连结并延长BP交AC于点E,交CF于点
24、如图,△ABC中,∠BAC=,AB=AC,AD⊥BC于D,点E是线段BD上一点,连接AE,CH⊥AE交AD于F,交
如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E在AC上,且AD=AE求证DE⊥BC
如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,
如图,在Rt△ABC中,∠C=90°,AC=BC,点D是AC上一点,点E是CB延长线上一点,且AD=BE,连接DE交AB
已知线段AB=20cm,点M是线段AB的中点,点C是AB延长线上一点,AC=3BC,点D是线段BA延长线上一点,AD=1
已知线段AB=20cm,点M是线段AB的中点,点C是AB延长线上一点,AC=3BC,点D是Ba延长线上的一点,AD=AB
如图,已知△ABC中,AB=AC,点P是它的角平分线AD延长线上的一点,点G,K在BC上.BG=CK说明△PGK为等腰三
已知:如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,点P为BC上任意一点,PE⊥AB于E,PF⊥AC于点F.
如图,Rt△ABC中,∠BAC=90°,AB=AC,P是BC延长线上一点,PE⊥AB交BA延长线于点E,PF⊥AC