(2012•江西模拟)在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 21:52:34
(2012•江西模拟)在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x2,y2)之间的“折线距离”.则圆(x-4)2+(y-3)2=4上一点与直线x+y=0上一点的“折线距离”的最小值是
7−2
2 |
设直线上的任意一点A,
圆上任意一点C;
过C,A分别作x、y轴的垂线交于点B.
由题意可知:d=AB+BC;
∵AB+BC≥AC,
转化为求AC的最小值.
AC的最小值等于圆心到直线的距离减去半径:即ACmin=
|4+3|
12+(−1) 2-2=
7
2
2-2;
此时ABC三点围成以AC为斜边的等腰直角三角形,故AB=BC=
2
2(
7
2
2-2)=
7
2-
2.
∴(AB+BC)min=2AC=7-2
2.
即d的最小值为:7-2
圆上任意一点C;
过C,A分别作x、y轴的垂线交于点B.
由题意可知:d=AB+BC;
∵AB+BC≥AC,
转化为求AC的最小值.
AC的最小值等于圆心到直线的距离减去半径:即ACmin=
|4+3|
12+(−1) 2-2=
7
2
2-2;
此时ABC三点围成以AC为斜边的等腰直角三角形,故AB=BC=
2
2(
7
2
2-2)=
7
2-
2.
∴(AB+BC)min=2AC=7-2
2.
即d的最小值为:7-2
在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1+y2|为两点P(x1,y1)Q(x2,y2)之间的“折线距
在平面直角坐标系中,以任意两点P( x1,y1)、Q(x2,y2)为端点的线段中点坐标为(x1+x2)/2,(y1+y2
在平面直角坐标系中,以任意两点p(x1,y1)、Q(x2,y2)为端点的线段中点坐标为(x1+x2)/2,(y1+y2)
在平面直角坐标系xOy中,O为坐标原点.定义P(x1,y1)、Q(x2,y2)两点之间的“直角距离”
在平面直角坐标系中,以任意两点P( x1,y1)、Q(x2,y2)为端点的线段中点坐标为.[运用](1)如图,矩
急!c++知平面直角坐标系中两点(x1,y1)和(x2,y2)之间的距离公式为
一次函数y=kx-3的图像上有两点p(x1,x2)Q(x2,y2)且x1大于x2,y1<y2,则k
过抛物线方程为y2=4x的焦点作直线l交于P(x1,y1),Q(x2,y2)两点,若x1+x2=6,则|PQ|=____
对于平面直角坐标系中的任意两点P1(x1,y1)与P2(x2,y2)、我们把|x1+x2|+|y1-y2|叫做P1、P2
对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1-x2|+|y1-y2|叫做P1、P2
(2013•济南二模)设P(x1,y1),Q(x2,y2)是抛物线y2=2px(p>0)上相异两点,Q、P到y轴的距离的
(2012•无锡)对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1-x2|