作业帮 > 综合 > 作业

在等腰梯形ABCD中,上底AD = 2,下底BC = 8,M是腰AB的中点,若MD垂直于CD

来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/08 06:40:40
在等腰梯形ABCD中,上底AD = 2,下底BC = 8,M是腰AB的中点,若MD垂直于CD
求梯形的面积
过D作DQ⊥BC于Q
作CD中点N,连结MN,交DQ于S
MN为梯形ABCD中位线
∴MN=5,MN‖BC
∴MS为梯形ABQD中位线
∴MS=7/2,S为DQ中点
∵DQ⊥BC,MN‖BC
∴DQ⊥MN
设DS=SQ=a
则MS²+PS²=MD²
则MP²=49/4 + a²
SN为△DQC中位线
∴SN=3/2
∴DN²=9/4 +a²
∵MD⊥CD
∴MD²+DN²=MN²
∴49/4 + a²+ 9/4 +a²=25
解得a=√21 /2
DQ=√21
S=1/2(2+8)*√21=5√21