作业帮 > 数学 > 作业

四面体ABCD中,AC长为根号2,其余棱长均为1,则二面角A—CD—B的大小是()

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 20:46:17
四面体ABCD中,AC长为根号2,其余棱长均为1,则二面角A—CD—B的大小是()
取CD的中点为E,取AC的中点为F,连接BE,EF,BF,则有EF=1/2AD=1/2
由题意得,BE⊥CD,AD⊥CD,∵EF‖AD ∴EF⊥CD∴∠BEF为所求的二面角
∵△BCD为边长为1的等边三角形
∴BE^2+CD^2=BC^2 解得BE=~3/2
又∵△ABC为等腰直角三角形
∴BF^2+CF^2=BC^2 解得BF=~2/2
∴BE^2=BF^2+EF^2 ∴△BEF为直角三角形
∴sin∠BEF=BF/BE=(~2/2)/(~3/2)=~6/3
∴∠BEF=arcsin(~6/3)
注:BE^2表示BE的平方,3表示根号3,其它的表示类似!