RT三角形ABC中,角C=90°,角B=30°,点P为斜边AB的中点,PM交AC于M,PN交BC于N,角MPN=90°.
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 04:12:34
RT三角形ABC中,角C=90°,角B=30°,点P为斜边AB的中点,PM交AC于M,PN交BC于N,角MPN=90°.
1)求证:PN=(根号3/3)PM(已证)
2)在(1)条件下将角ABC沿射线BC翻折得到角CBQ,连接MN并延长MN交射线BQ于Q,那么线段BQ,BN,BP的关系是?
3)在2)的条件下,连接CP,角MNP的平分线段PC于点E,若BQ=2,MN=(2倍根号21/3),求CE.
2问图
1)求证:PN=(根号3/3)PM(已证)
2)在(1)条件下将角ABC沿射线BC翻折得到角CBQ,连接MN并延长MN交射线BQ于Q,那么线段BQ,BN,BP的关系是?
3)在2)的条件下,连接CP,角MNP的平分线段PC于点E,若BQ=2,MN=(2倍根号21/3),求CE.
2问图
一、连接PC,∠AMP=∠ACP+∠CPM=60+∠CPM;
∠BNP=∠BCP+∠CPN=30+∠CPN;
又∠CPM+∠CPN=90;
所以∠AMP=180-∠BNP;
在△APM中,PM/sin60=AP/sin(∠AMP),即PM=√3/2*AP/sin(∠AMP);
在△BPN中,PN/sin30=BP/sin(∠BNP),即PN=1/2*AP/sin(180-∠AMP); (BP=AP)
所以PN=PM/√3=√3PM/3;
∠BNP=∠BCP+∠CPN=30+∠CPN;
又∠CPM+∠CPN=90;
所以∠AMP=180-∠BNP;
在△APM中,PM/sin60=AP/sin(∠AMP),即PM=√3/2*AP/sin(∠AMP);
在△BPN中,PN/sin30=BP/sin(∠BNP),即PN=1/2*AP/sin(180-∠AMP); (BP=AP)
所以PN=PM/√3=√3PM/3;
已知:等边三角形ABC边长为6,P为BC边上一点,角MPN=60度,PM、PN分别与边AB、AC交于点E、F,且PM垂直
三角形ABC,BE平分角B交AC于E,DC平分角C交AB于D,DE中点P分别垂直AB、BC、CA于M,Q,N求PQ=PM
在RT三角形ABC中,点M是斜边BC的中点,点N在边AC上AN=2NC,AM与BN交于点P,求 AP:PM的值
△ABC中,D是AB边的中点,PD⊥AB交∠ACB的角平分线于点P,PM⊥AC于M,PN⊥BC交CB的延长线于N,求证:
如图,已知三角形ABC中,AB=AC,P是BC边上一点,分别交AB于点M,交AC的延长线于点N,且PM=PN.
如图,Rt△ABC中,∠C=90°,以AB上点O为圆心,BO为半径的圆交AB的中点于E,交BC于D,且与AC切于点P
在RT三角形ABC中 角ACB=90°CD是斜边AB的高 E是BC边中点ED的延长线于CA的延长线交于F 求证 AC/B
已知三角形ABC中,AD为中线,P为AD上的任一点,过P点的直线交AB于M,交AC于N,若AN=AM,则PM/PN=AC
已知如图,在等腰Rt△ABC中,角C=90°,AC=2,M是边AC上一点.过点M的直线交CB的延长线于N,交边AB于P,
(2014•昆都仑区一模)如图,在Rt△ABC中,∠C=90°,以边AC为直径作⊙O,与斜边AB交于点M,点N是边BC的
在RT三角形ABC中,角C=90°,AC=根号2,BC=1,以C为圆心,CB为半径的圆交AB于点P,求则AP的长.
三角形ABC中,角C=90度,AB为斜边,点E是AB的中点过点E作DE垂直AB交BC于点D,连接AD,AC=8,三角形A