作业帮 > 数学 > 作业

在△ABC中,内角A,B,C的对边是a,b,c且a²=b²+c²+√3bc,求角A,

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 12:09:33
在△ABC中,内角A,B,C的对边是a,b,c且a²=b²+c²+√3bc,求角A,
(2)设a=√3,S为△ABC的面积,求S=3cosBcosC的最大值,并指出此时角B的值
改:(2)设a=√3,S为△ABC的面积,求S+3cosBcosC的最大值,并指出此时角B的值
a²=b²+c²+√3bc
b²+c²-a²=- √3bc
cosA
=(b²+c²-a²)/2bc
=- √3/2
A=150°
(2)
sinA=1/2 ,a=√3
a/sinA=b/sinB=c/sinC
2√3=b/sinB
b=2√3 sinB
同理:a/sinA=c/sinC
c=2√3 sinC
S+3cosBcosC
=1/2bcsinA+3cosBcosC
=3sinBsinC+3cosBcosC
=3cos(B-C)
B-C=0,即B=C=15°时,S+3cosBcosC取最大值,最大值为3